Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 1, Pages 106–123
DOI: https://doi.org/10.22405/2226-8383-2018-19-1-106-123
(Mi cheb625)
 

This article is cited in 16 scientific papers (total in 16 papers)

Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes

N. N. Dobrovolskya, M. N. Dobrovolskyb, N. M. Dobrovolskyc, I. N. Balabac, I. Yu. Rebrovac

a Tula State University
b Geophysical center of RAS, Moscow
c Tula State Pedagogical University
References:
Abstract: The work continues the study of a new class of Dirichlet series — the zeta functions of monoids of natural numbers. First of all, we study in detail the zeta function $\zeta(M(q)|\alpha)$ of geometric progression $M(q)$ with initial value equal to 1 and an arbitrary natural common ratio $q>1$, which is the simplest monoid of natural numbers with a unique decomposition into prime elements of the monoid. For a meromorphic function $\zeta(M(q)|\alpha)=\frac{q^\alpha}{q^\alpha-1}$, which have poles
$$ S(M (q))=\left\{\left. \frac{2\pi i k}{\ln q}\right| k\in\mathbb{Z}\right\} $$
representations are received:
\begin{gather*} \zeta(M(q)|\alpha)=\frac{q^{\frac{\alpha}{2}}}{\alpha\ln q}\prod_{n=1}^{\infty}\left(1+\frac{\alpha^2\ln^2 q}{4\pi^2 n^2}\right)^{-1}=\frac{1}{2}+\frac{1}{\alpha\ln q}+\sum_{n=1}^{\infty}\frac{2\alpha\ln q}{\alpha^2\ln^2 q+4n^2\pi^2}= \\ =\frac{q^{\frac{\alpha}{2}}\alpha\ln q}{4\pi^2}\Gamma\left(\frac{\alpha i\ln q }{2\pi}\right)\Gamma\left(-\frac{\alpha i\ln q }{2\pi}\right). \end{gather*}

For the zeta function $\zeta(M(\vec{p})|\alpha)$ of the monoid $M(\vec{p})$ with a finite number of primes $\vec{p}=(p_1,\ldots,p_n)$ the decomposition into an infinite product is obtained
$$ \zeta(M(\vec{p})|\alpha)=\frac{P(\vec{p})^{\frac{\alpha}{2}}}{\alpha^nQ(\vec{p})}\prod_{\nu=1}^{n}\prod_{m=1}^{\infty}\left(1+\frac{\alpha^2\ln^2 p_\nu}{4\pi^2 m^2}\right)^{-1}, $$
where $P (\vec{p})=p_1\ldots p_n$, $Q (\vec{p})=\ln p_1\ldots \ln p_n$, and a functional equation is found
$$ \zeta (M (\vec{p})|-\alpha)=(-1)^n\frac{\zeta (M (\vec{p})|\alpha)}{P (\vec{p})^\alpha}. $$

For the monoid of natural numbers $M^*(\vec{p})= \mathbb{N}\cdot M^{-1} (\vec{p})$ with a unique decomposition into prime elements, which consists of natural numbers $n$ coprime with $P (\vec{p})=p_1\ldots p_n$, and for the Euler product $P (M^*(\vec{p}) / \ alpha)$, which consists of factors for all primes other than $p_1,\ldots, p_n$, a functional equation is found
$$ \zeta(M^*(\vec{p})|\alpha)=M(\vec{p},\alpha) \zeta(M^*(\vec{p})|1-\alpha), $$
where
$$ M(\vec{p},\alpha)=M(\alpha)\cdot\frac{M_1(\vec{p},\alpha)}{M_1(\vec{p},1-\alpha)}, \quad M_1(\vec{p},\alpha)=\prod_{\nu=1}^{n}\left(1-\frac{1}{p_\nu^\alpha}\right). $$

It is proved that for any infinite set of primes $\mathbb{P}_1$ there is no analytic function equal to
$$\lim\limits_{n\to\infty} \zeta(M(\vec{p}_n)|\alpha)$$
on the whole complex plane.
The hypothesis about the barrier series for any exponential set of $ PE $ prime numbers is formulated.
In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of monoids of natural numbers, Euler product, logarithm of the Euler product.
Funding agency Grant number
Russian Foundation for Basic Research 16-41-710194_р_центр_а
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovolsky, M. N. Dobrovolsky, N. M. Dobrovolsky, I. N. Balaba, I. Yu. Rebrova, “Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes”, Chebyshevskii Sb., 19:1 (2018), 106–123
Citation in format AMSBIB
\Bibitem{DobDobDob18}
\by N.~N.~Dobrovolsky, M.~N.~Dobrovolsky, N.~M.~Dobrovolsky, I.~N.~Balaba, I.~Yu.~Rebrova
\paper Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 1
\pages 106--123
\mathnet{http://mi.mathnet.ru/cheb625}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-1-106-123}
\elib{https://elibrary.ru/item.asp?id=36312680}
Linking options:
  • https://www.mathnet.ru/eng/cheb625
  • https://www.mathnet.ru/eng/cheb/v19/i1/p106
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024