Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 4, Pages 339–347
DOI: https://doi.org/10.22405/2226-8383-2017-18-4-338-346
(Mi cheb616)
 

On interpolation of functions of several variables

V. N. Chubarikov, M. L. Sharapova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we constructed effective multivariate interpolation formulas for periodic functions, which are the precise on the Fourier polynomial classes. This paper continues investigations by N.M. Korobov [5], V.S. Rjaben'kii [11], S.M. Voronin [8], and others scientists on the application of the number-theoretic methods in numerical analysis. These authors was given the number of knots of a network equals to a prime number in the ring of integer rational numbers and in rings of integer numbers in algebraic numbers.
Here we consider the class of strictly regular periodic functions $f(x_1,\dots ,x_n),$ having the period on of one the each variables, and expanding in the absolute convergent Fourier series (see, for example, [15], p. 447) of the form
$$ f(x_1,\dots ,x_n)=\sum_{m_1=-\infty}^{\infty}\dots \sum_{m_n=-\infty}^{\infty}c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots +m_nx_n)}, $$
where
$$ c(m_1,\dots ,m_n)=\int\limits_0^1\dots\int\limits_0^1f(x_1,\dots,x_n)e^{-2\pi i(m_1x_1+\dots +m_nx_n)}\;dx_1\dots dx_n. $$
Further, we select the number of lattice points $N$ in the form $N=N_1\dots N_n,$ where $(N_s,N_t)=1$ as $s\ne t, 1\leq s,t\leq n,$ and $N_s\asymp N^{1/n}, 1\leq n,$ and using the Chinesse theorem on remainders, we construct the interpolation polynomial of the form
$$ P(x_1,\dots ,x_n)=\sum_{m_1=0}^{N_1-1}\dots\sum_{m_n=0}^{N_n-1}\tilde c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots m_nx_n)}, $$
where
$$ c(m_1,\dots ,m_n)=\frac 1N\sum_{k_1=1}^{N_1}\dots \sum_{k_n=1}^{N_n}f\left(\frac{M_1^{*}k_1}{N_1},\dots ,\frac{M_n^{*}k_n}{N_n}\right)e^{-2\pi i\left(\frac{M_1^{*}m_1}{N_1}+\dots+\frac{M_n^{*}m_n}{N_n}\right)}, $$
moreover $N_sM_s=N, M_sM_s^{*}\equiv 1\pmod{N_s}.$
Keywords: the number-theoretic method in the numerical analysis, a lattice points, the V.S.Rjaben'kii method, the interpolation polynomial, rings of the integer rational and the integer algebraic numbers, the Chinesse theorem on remainders.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00071_а
Received: 07.08.2017
Revised: 11.12.2017
Accepted: 14.12.2017
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, M. L. Sharapova, “On interpolation of functions of several variables”, Chebyshevskii Sb., 18:4 (2017), 339–347
Citation in format AMSBIB
\Bibitem{ChuSha17}
\by V.~N.~Chubarikov, M.~L.~Sharapova
\paper On interpolation of functions of several variables
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 339--347
\mathnet{http://mi.mathnet.ru/cheb616}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-338-346}
Linking options:
  • https://www.mathnet.ru/eng/cheb616
  • https://www.mathnet.ru/eng/cheb/v18/i4/p339
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :144
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024