Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 4, Pages 326–338 (Mi cheb615)  

This article is cited in 3 scientific papers (total in 3 papers)

Algebraic lattice in a metric space lattices

E. N. Smirnovaa, O. A. Pikhtilkovaa, N. N. Dobrovol'skiib, N. M. Dobrovol'skiic

a Orenburg State University
b Tula State University
c Tula State Pedagogical University
Full-text PDF (638 kB) Citations (3)
References:
Abstract: In this article we give a new General definition of an algebraic lattice. It is proved that any rational transformation of algebraic lattices is again an algebraic lattice. It is shown that the reciprocal lattice to algebraic lattices will also be an algebraic lattice, corresponding to a purely-real algebraic field $F_s$ over the rationals $\mathbb{Q}$.
Following B. F. Skubenko, we study the fundamental system of pure-real algebraic fields $F_s$ over the rationals $\mathbb{Q}$. Shows the relationship between fundamental systems of algebraic numbers and algebraic lattices.
We prove estimates for the norms of transition matrices from an arbitrary nondegenerate matrix for approximating rational matrix. Using the Lemma about the estimation of the norm of the matrix of transition and inverse transition matrices, linking an arbitrary non-degenerate matrix and a nondegenerate approximating the rational matrix, it is shown that the set of algebraic lattices is everywhere dense in a metric space lattices.
The theorem is a special case of a more General theorem that for any lattice $\Lambda\in PR_s$ the set of all rational lattices associated with a lattice $\Lambda$ is everywhere dense in $PR_s$.
The analogue of this theorem is the assertion that for an arbitrary point of the General clause of $\mathbb{R}^s$, the corresponding $s$-dimensional rational arithmetic space is everywhere dense in $s$-dimensional real arithmetical space $\mathbb{R}^s$.
Keywords: algebraic lattices, a metric space lattices.
Funding agency Grant number
Russian Foundation for Basic Research 16-41-710194_р_центр_а
15-01-01540_a
Received: 17.09.2017
Accepted: 15.12.2017
Document Type: Article
UDC: 511.42
Language: Russian
Citation: E. N. Smirnova, O. A. Pikhtilkova, N. N. Dobrovol'skii, N. M. Dobrovol'skii, “Algebraic lattice in a metric space lattices”, Chebyshevskii Sb., 18:4 (2017), 326–338
Citation in format AMSBIB
\Bibitem{SmiPikDob17}
\by E.~N.~Smirnova, O.~A.~Pikhtilkova, N.~N.~Dobrovol'skii, N.~M.~Dobrovol'skii
\paper Algebraic lattice in a metric space lattices
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 326--338
\mathnet{http://mi.mathnet.ru/cheb615}
Linking options:
  • https://www.mathnet.ru/eng/cheb615
  • https://www.mathnet.ru/eng/cheb/v18/i4/p326
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024