Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 4, Pages 256–260
DOI: https://doi.org/10.22405/2226-8383-2017-18-4-255-259
(Mi cheb609)
 

Estimates of polynomials in a liouvillean polyadic integer

E. S. Krupitsyn

Moscow State Pedagogical University
References:
Abstract: Let
$$ \alpha=\sum\limits_{n=0}^\infty a_kn_k!, \quad a_k\in\mathbb{Z}, \quad 0\leqslant a_k\leqslant n_k, $$
with a rapidly growing sequence $n_k$ of positive integers. This series converges in all $p$-adic fields $\mathbb{Q}_p$ so it is a polyadic number.
The ring of polyadic integers is a direct product of the rings $\mathbb{Z}_p$ of $p$-adic integers over all prime numbers $p$.
So $\alpha$ can be considered as the vector $\left(\alpha^{(1)}, \ldots, \alpha^{(n)}, \ldots\right)$ with coordinates equal to the sums $\alpha^{(n)}$ of the series $\alpha$ in the field $\mathbb{Q}_{p_n}$ for the $n$-th prime $p_n$.
For any nonzero polynomial $P(x)$ with integer coefficients one has
$$ P(\alpha)=\left(P\left(\alpha^{(1)}\right), \ldots, P\left(\alpha^{(n)}\right), \ldots \right). $$

The polyadic integer $\alpha$ is called transcendental, if for any nonzero polynomial $P(x)$ with rational integer coefficients there exist a prime $p^{(n)}$ with $P\left(\alpha^{(n)}\right)\neq 0$ in $p_n$.
The polyadic integer is infinitely transcendental if there exist infinitely many primes $p_n$ such that $P\left(\alpha^{(n)}\right)\neq 0$ in $\mathbb{Q}_{p_n}$ and it is called globally transcendental, if $P\left(\alpha^{(n)}\right)\neq 0$ for any $n$.
The paper presents estimates from below of $\left|P\left(\alpha^{(n)}\right)\right|_{p_n}$ in any $\mathbb{Q}_{p_n}$. As a corollary we get the global transcendence of $\alpha$.
Keywords: polyadic integer, estimates of polynomials.
Received: 14.09.2017
Accepted: 15.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: E. S. Krupitsyn, “Estimates of polynomials in a liouvillean polyadic integer”, Chebyshevskii Sb., 18:4 (2017), 256–260
Citation in format AMSBIB
\Bibitem{Kru17}
\by E.~S.~Krupitsyn
\paper Estimates of polynomials in a liouvillean polyadic integer
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 256--260
\mathnet{http://mi.mathnet.ru/cheb609}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-255-259}
\elib{https://elibrary.ru/item.asp?id=30042558}
Linking options:
  • https://www.mathnet.ru/eng/cheb609
  • https://www.mathnet.ru/eng/cheb/v18/i4/p256
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :46
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024