|
Estimates of polynomials in a liouvillean polyadic integer
E. S. Krupitsyn Moscow State Pedagogical University
Abstract:
Let
$$
\alpha=\sum\limits_{n=0}^\infty a_kn_k!, \quad a_k\in\mathbb{Z}, \quad 0\leqslant a_k\leqslant n_k,
$$
with a rapidly growing sequence $n_k$ of positive integers. This series converges in all $p$-adic fields $\mathbb{Q}_p$ so it is a polyadic number.
The ring of polyadic integers is a direct product of the rings $\mathbb{Z}_p$ of $p$-adic integers over all prime numbers $p$.
So $\alpha$ can be considered as the vector $\left(\alpha^{(1)}, \ldots, \alpha^{(n)}, \ldots\right)$ with coordinates equal to the sums $\alpha^{(n)}$ of the series $\alpha$ in the field $\mathbb{Q}_{p_n}$ for the $n$-th prime $p_n$.
For any nonzero polynomial $P(x)$ with integer coefficients one has
$$
P(\alpha)=\left(P\left(\alpha^{(1)}\right), \ldots, P\left(\alpha^{(n)}\right), \ldots \right).
$$
The polyadic integer $\alpha$ is called transcendental, if for any nonzero polynomial $P(x)$ with rational integer coefficients there exist a prime $p^{(n)}$ with $P\left(\alpha^{(n)}\right)\neq 0$ in $p_n$.
The polyadic integer is infinitely transcendental if there exist infinitely many primes $p_n$ such that $P\left(\alpha^{(n)}\right)\neq 0$ in $\mathbb{Q}_{p_n}$ and it is called globally transcendental, if $P\left(\alpha^{(n)}\right)\neq 0$ for any $n$.
The paper presents estimates from below of $\left|P\left(\alpha^{(n)}\right)\right|_{p_n}$ in any $\mathbb{Q}_{p_n}$. As a corollary we get the global transcendence of $\alpha$.
Keywords:
polyadic integer, estimates of polynomials.
Received: 14.09.2017 Accepted: 15.12.2017
Citation:
E. S. Krupitsyn, “Estimates of polynomials in a liouvillean polyadic integer”, Chebyshevskii Sb., 18:4 (2017), 256–260
Linking options:
https://www.mathnet.ru/eng/cheb609 https://www.mathnet.ru/eng/cheb/v18/i4/p256
|
Statistics & downloads: |
Abstract page: | 167 | Full-text PDF : | 44 | References: | 20 |
|