Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 4, Pages 168–187
DOI: https://doi.org/10.22405/2226-8383-2017-18-4-167-186
(Mi cheb604)
 

This article is cited in 1 scientific paper (total in 1 paper)

On fractional moments of the mollified Dirichlet $L$-functions

S. A. Gritsenkoabc

a Lomonosov Moscow State University
b Bauman Moscow State Technical University
c Financial University under the Government of the Russian Federation, Moscow
Full-text PDF (669 kB) Citations (1)
References:
Abstract: Let $\chi_1(n)$ be the character of Dirichlet mod 5 such that $\chi_1(2)=i$,
$$ \varkappa=\frac{\sqrt{10-2 \sqrt{5}}-2}{\sqrt{5}-1}. $$

Davenport–Heilbronn function is defined below
$$ f(s)=\frac{1-i\varkappa}{2}L(s,\chi_1)+\frac{1+i\varkappa}{2}L(s,\overline{\chi}_1). $$

The function $f(s)$ was introduced and investigated by Davenport and Heilbronn, in 1936. It satisfies the functional equation of Riemann's type
$$ g(s)=g(1-s), $$
where $g(s)=(\frac{\pi}{5})^{-s/2}\Gamma(\frac{1+s}{2})f(s)$.
It is well-known however, that not all non-trivial zeros of $f(s)$ lie on the line $\Re s=\frac{1}{2}$.
In the region $\Re s>1$, $0<\Im s\le T$ the number of zeros of $f(s)$ exceeds $cT$, where $c>0$ is an absolute constant (Davenport and Heilbronn, 1936).
Moreover, the number of zeros of $f(s)$ in the region $\frac{1}{2}<\sigma_1<\Re s<\sigma_2$, $0<\Im s\le T$ exceeds $c_1T$, where $c>0$ is an absolute constant(S. M. Voronin, 1976).
In 1980, S. M. Voronin proved that «abnormally many» zeros of $f(s)$ lied on the critical line $\Re s=\frac{1}{2}$. Let $N_{0,f}(T)$ be the number of zeros of $f(s)$ on the segment $\Re s=\frac{1}{2}$, $0<\Im s\le T$. S. M. Voronin got the estimate
$$ N_{0,f}(T)>c_2T\exp\{\frac{1}{20}\sqrt{\log\log\log\log T}\}, $$
where $c_2>0$ is an absolute constant.
In 1990, A. A. Karatsuba significantly improved Voronin's estimate and got the inequality
$$ N_{0,f}(T)>T(\log T)^{1/2-\varepsilon}, $$
where $\varepsilon>0$ is an arbitrary small constant, $T>T_0(\varepsilon)>0$.
In 1994, A. A. Karatsuba got somewhat more accurate estimate
$$ N_{0,f}(T)>T(\log T)^{1/2}\exp\{-c_3\sqrt{\log\log T}\}, $$
where $c_3>0$ is an absolute constant.
In 2017, the author got the following estimate
$$ N_{0,f}(T)> T (\log T)^{1/2+1/16-\varepsilon}\quad (\varepsilon>0). $$

In this paper we obtain new upper and lower estimates of the fractional moments of mollified Dirichlet series, from which it follows that
$$ N_{0,f}(T)> T (\log T)^{1/2+1/12-\varepsilon}\quad (\varepsilon>0). $$
Keywords: Davenport–Heilbronn function, zeroes on the critical line, fractional moments of mollified moments of Dirichlet series.
Received: 29.09.2017
Accepted: 14.12.2017
Document Type: Article
UDC: 511.331
Language: Russian
Citation: S. A. Gritsenko, “On fractional moments of the mollified Dirichlet $L$-functions”, Chebyshevskii Sb., 18:4 (2017), 168–187
Citation in format AMSBIB
\Bibitem{Gri17}
\by S.~A.~Gritsenko
\paper On fractional moments of the mollified Dirichlet $L$-functions
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 168--187
\mathnet{http://mi.mathnet.ru/cheb604}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-167-186}
Linking options:
  • https://www.mathnet.ru/eng/cheb604
  • https://www.mathnet.ru/eng/cheb/v18/i4/p168
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :53
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024