Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 4, Pages 86–96
DOI: https://doi.org/10.22405/2226-8383-2017-18-4-86-96
(Mi cheb598)
 

The Laplace transform of Dirichlet $L$-functions

A. Balčiūnasa, R. Macaitienėb

a Vilnius Gediminas Technical University
b Siauliai State College
References:
Abstract: Let $\chi$ be a Dirichlet character modulo $q$. The Dirichlet $L$-function $L(s,\chi)$ is defined in the half-plane $\sigma>1$ by the series
$$ L(s,\chi)=\sum_{m=1}^{\infty}\frac{\chi(m)}{m^s}, $$
and has a meromorphic continuation to the whole complex plane. If $\chi$ is a non-principal character, then the function $L(s,\chi)$ is entire one. In the case of the principal character, the function $L(s,\chi)$ has unique simple pole at the point $s=1$. Dirichlet $L$- functions play an important role in the investigations of the distribution of prime numbers in arithmetical progresions, therefore, their analytic properties deserve a constant attention. In applications, often the moments of Dirichlet $L$-functions are used, whose asymptotic behaviour is very complicated. For investigation of moments, various methods are applied, one of them is based on the application of Mellin transforms. On the other hand, Mellin transforms use Laplace transforms. In the paper, the formulae for the Laplace transform of the function $\arrowvert L(s,\chi) \arrowvert^2$ in the critical strip are obtained. They extend the formulae obtained in [BaLa] on the critical line $\sigma=\frac{1}{2}$.
Keywords: Dirichlet $L$-function, Laplace transform, Mellin transform, Riemann zeta-function.
Received: 29.06.2016
Accepted: 14.12.2017
Document Type: Article
UDC: 511.3
Language: English
Citation: A. Balčiūnas, R. Macaitienė, “The Laplace transform of Dirichlet $L$-functions”, Chebyshevskii Sb., 18:4 (2017), 86–96
Citation in format AMSBIB
\Bibitem{BalMac17}
\by A.~Bal{\v{c}}i{\=u}nas, R.~Macaitien{\.e}
\paper The Laplace transform of Dirichlet $L$-functions
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 86--96
\mathnet{http://mi.mathnet.ru/cheb598}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-86-96}
Linking options:
  • https://www.mathnet.ru/eng/cheb598
  • https://www.mathnet.ru/eng/cheb/v18/i4/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :67
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024