|
This article is cited in 5 scientific papers (total in 5 papers)
Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator
D. V. Gorbachev, V. I. Ivanov Tula State University
Abstract:
The Turán, Fejér, Delsarte, Bohman, and Logan extremal problems for
positive definite functions in Euclidean space or for functions with
nonnegative Fourier transform have many applications in the theory of
functions, approximation theory, probability theory, and metric geometry.
Since the extremal functions in them are radial, by means of averaging over the
Euclidean sphere they admit a reduction to analogous problems for the Hankel
transform on the half-line. For the solution of these problems we can use the
Gauss and Markov quadrature formulae on the half-line at zeros of the Bessel
function, constructed by Frappier and Olivier.
The normalized Bessel function, as the kernel of the Hankel transform, is the
solution of the Sturm–Liouville problem with power weight. Another important
example is the Jacobi transform, the kernel of which is the solution of the
Sturm–Liouville problem with hyperbolic weight. The authors of the paper
recently constructed the Gauss and Markov quadrature formulae on the half-line
at zeros of the eigenfunctions of the Sturm–Liouville problem under natural
conditions on the weight function, which, in particular, are satisfied for
power and hyperbolic weights.
Under these conditions on the weight function, the Turán, Fejér,
Delsarte, Bohman, and Logan extremal problems for the Fourier transform over
eigenfunctions of the Sturm–Liouville problem are solved. Extremal functions
are constructed. For the Turán, Fejér, Bohman, and Logan problems their
uniqueness is proved.
Bibliography: 44 titles.
Keywords:
Sturm–Liouville problem on the half-line, Fourier transform, Turán, Fejér, Delsarte, Bohman and Logan extremal problems, Gauss and Markov quadrature formulae.
Received: 12.03.2017 Accepted: 12.06.2017
Citation:
D. V. Gorbachev, V. I. Ivanov, “Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Chebyshevskii Sb., 18:2 (2017), 34–53
Linking options:
https://www.mathnet.ru/eng/cheb563 https://www.mathnet.ru/eng/cheb/v18/i2/p34
|
Statistics & downloads: |
Abstract page: | 495 | Full-text PDF : | 140 | References: | 54 |
|