Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2017, Volume 18, Issue 2, Pages 54–97
DOI: https://doi.org/10.22405/2226-8383-2017-18-2-54-97
(Mi cheb544)
 

This article is cited in 1 scientific paper (total in 1 paper)

On fractional linear transformations of forms A. Thue–M. N. Dobrovolsky–V. D. Podsypanina

N. M. Dobrovol'skiiab, I. N. Balabaab, I. Yu. Rebrovaba, N. N. Dobrovol'skiiba, E. A. Matveevaab

a Tula State Pedagogical University
b Tula State University
Full-text PDF (787 kB) Citations (1)
References:
Abstract: The work builds on the algebraic theory of polynomials Tue. The theory is based on the study of submodules of $\mathbb Z[t]$-module $\mathbb Z[t]^2$. Considers submodules that are defined by one defining relation and one defining relation $k$-th order. More complex submodule is the submodule given by one polynomial relation. Sub par Tue $j$-th order are directly connected with polynomials Tue $j$-th order. Using the algebraic theory of pairs of submodules of Tue $j$-th order managed to obtain a new proof of the theorem of M. N. Dobrowolski (senior) that for each $j$ there are two fundamental polynomial Tue $j$-th order, which are expressed through others. Basic polynomials are determined with an accuracy of unimodular polynomial matrices over the ring of integer polynomials.
In the work introduced linear-fractional conversion of TDP-forms. It is shown that the transition from TDP-forms associated with an algebraic number $\alpha$ to TDP-the form associated with the residual fraction to algebraic number $\alpha$, TDP-form is converted under the law, similar to the transformation of minimal polynomials and the numerators and denominators of the respective pairs of Tue is converted using the linear-fractional transformations of the second kind.
Bibliography: 37 titles.
Keywords: the minimum polynomial of the given algebraic irrationality, residual fractions, continued fractions, TDP-shape, the modules Tue, couple Tue, linear-fractional transformation of the second kind.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01540_а
16-41-710194_р_а
Received: 02.03.2017
Accepted: 12.06.2017
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, N. N. Dobrovol'skii, E. A. Matveeva, “On fractional linear transformations of forms A. Thue–M. N. Dobrovolsky–V. D. Podsypanina”, Chebyshevskii Sb., 18:2 (2017), 54–97
Citation in format AMSBIB
\Bibitem{DobBalReb17}
\by N.~M.~Dobrovol'skii, I.~N.~Balaba, I.~Yu.~Rebrova, N.~N.~Dobrovol'skii, E.~A.~Matveeva
\paper On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 2
\pages 54--97
\mathnet{http://mi.mathnet.ru/cheb544}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-2-54-97}
\elib{https://elibrary.ru/item.asp?id=30042541}
Linking options:
  • https://www.mathnet.ru/eng/cheb544
  • https://www.mathnet.ru/eng/cheb/v18/i2/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :149
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024