Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 3, Pages 191–196 (Mi cheb507)  

On transformations of periodic sequences

V. G. Chirskii

Moscow State Pedagogical University
References:
Abstract: One of essential problems in generating pseudo-random numbers is the problem of periodicity of the resulting numbers. Some generators output periodic sequences. To avoid it several ways are used.
Here we present the following approach: supposed we have some order in the considered set. Let's invent some algorithm which produces disorder in the set. E.g. if we have a periodic sequence of integers, let's construct an irrational number implying the given set. Then the figures of the resulting number form a non-periodic sequence.
Here we can use continued fractions and Lagrange's theorem asserts that the resulting number is irrational.
Another approach is to use series of the form $\sum_{n=0}^\infty \frac{a_n}{n!}$ with a periodic sequence of integers $\{a_n\}, a_{n+T}=a_n$ which is irrational.
Here we consider polyadic series $\sum_{n=0}^\infty a_n n!$ with a periodic sequence of positive integers $\{a_n\},a_{n+T} = a_n$ and describe some of their properties.
Bibliography: 15 titles.
Keywords: periodic sequences, polyadic integers.
Received: 30.06.2016
Accepted: 12.09.2016
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 147–149
DOI: https://doi.org/10.1134/S1064562422700338
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. G. Chirskii, “On transformations of periodic sequences”, Chebyshevskii Sb., 17:3 (2016), 191–196; Doklady Mathematics (Supplementary issues), 106:2 (2022), 147–149
Citation in format AMSBIB
\Bibitem{Chi16}
\by V.~G.~Chirskii
\paper On transformations of periodic sequences
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 3
\pages 191--196
\mathnet{http://mi.mathnet.ru/cheb507}
\elib{https://elibrary.ru/item.asp?id=27452092}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 147--149
\crossref{https://doi.org/10.1134/S1064562422700338}
Linking options:
  • https://www.mathnet.ru/eng/cheb507
  • https://www.mathnet.ru/eng/cheb/v17/i3/p191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :69
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024