Loading [MathJax]/jax/output/CommonHTML/jax.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 3, Pages 166–177 (Mi cheb504)  

This article is cited in 6 scientific papers (total in 6 papers)

Algebraic independence of certain almost polyadic series

V. Yu. Matveev
Full-text PDF (624 kB) Citations (6)
References:
Abstract: The paper describes the arithmetic nature of the values at integer points of series from the so-called class of F-series which constitute a solution of a system of linear differential equations with coefficients — rational functions in z.
We consider a subclass of the series consisting of the series of the form
n=0ann!zn
where anQ, |an|ec1n, n=0,1, with some constant c1. Besides there exists a sequence of positive integers dn such that dnakZ, k=0,,n and dn=d0,ndn, d0,nN, n=0,1,,dN and for any n the number d0,n is divisible only by primes p such that pc2n. Moreover
ordpnc3(logpn+np2).
We say then that the considered series belongs to the class F(Q,c1,c2,c3,d). Such series converge at a point zZ, z0 in the field Qp for almost all primes p.
The direct product of the rings Zp of p-adic integers over all primes p is called the ring of polyadic integers. It's elements have the form
a=n=0ann!,anZ
and they can be considered as vectors with coordinates a(p) which are equal to the sum of the series a in the field Qp (This direct product is infinite).
For any polynomial P(x) with integer coefficients we define P(a) as the vector with coordinates P(a(p)) in Qp. According to the classification, described in V. G. Chirskii's works we call polyadic numbers a1,,am infinitely algebraically independent, if for any nonzero polynomial P(x1,,xm) with integer coefficients there exist infinitely many primes p such that
P(a(p)1,,a(p)m)0
in Qp.
The present paper states that if the considered F-series f1,,fm satisfy a system of differential equations of the form
P1,iyi+P0,iyi=Qi,i=1,,m
where the coefficients P0,i,P1,i,Qi are rational functions in z and if ξZ, ξ0, ξ is not a pole of any of these functions and if
exp((P0,i(z)P1,i(z)P0,j(z)P1,j(z))dz)C(z)
then f1(ξ),,fm(ξ) are infinitely algebraically independent almost polyadic numbers.
For the proof we use a modification of the Siegel–Shidlovsky's method and V. G. Chirskii's. Salikhov's approach to prove the algebraic independence of functions, constituting a solution of the above system of differential equations.
Bibliography: 30 titles.
Keywords: algebraic independence, almost polyadic numbers.
Received: 30.06.2016
Accepted: 13.09.2016
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. Yu. Matveev, “Algebraic independence of certain almost polyadic series”, Chebyshevskii Sb., 17:3 (2016), 166–177
Citation in format AMSBIB
\Bibitem{Mat16}
\by V.~Yu.~Matveev
\paper Algebraic independence of certain almost polyadic series
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 3
\pages 166--177
\mathnet{http://mi.mathnet.ru/cheb504}
\elib{https://elibrary.ru/item.asp?id=27452089}
Linking options:
  • https://www.mathnet.ru/eng/cheb504
  • https://www.mathnet.ru/eng/cheb/v17/i3/p166
  • This publication is cited in the following 6 articles:
    1. V. G. Chirskii, “Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 150–153  mathnet  crossref  crossref
    2. V. G. Chirskii, “Polyadic Liouville numbers”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 137–141  mathnet  crossref  crossref
    3. V. G. Chirskii, “On polyadic Liouville numbers”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 161–164  mathnet  crossref  crossref
    4. V. Yu. Matveev, “Beskonechnaya algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh chisel”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva. Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 29–33  mathnet  crossref
    5. V. G. Chirskii, “Algebraicheskie svoistva tochek nekotorogo beskonechnomernogo metricheskogo prostranstva”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva. Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 81–87  mathnet  crossref
    6. V. Yu. Matveev, “Svoistva elementov pryamykh proizvedenii polei”, Chebyshevskii sb., 20:2 (2019), 383–390  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :78
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025