Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 2, Pages 128–136 (Mi cheb483)  

On amenable subgroups of $F$-groups

V. G. Durnev, O. V. Zetkina, A. I. Zetkina

P.G. Demidov Yaroslavl State University
References:
Abstract: When studying the Banach–Tarski paradox, John von Neumann (1929) introduced the concept of amenable group: a group $G$ is amenable, if it has a left invariant nontrivial finitely additive measure, i.e. a non-negative valued function $\mu$ defined on the set $P(G)$ of all subsets of the set $G$ satisfying
  • $\mu (G) \, > \, 0$,
  • for all non-intersecting subsets $U$ $V$ of the set $G$ the equality $ \mu (U \cup V) \, = \, \mu (U ) \, + \,\mu ( V) $ holds,
  • for any subset $U$ of the set $G$ and for all element $g$ of the group $G$ the equality $ \mu (g U ) = \mu (U ) $ holds.
John von Neumann (1929) found that any locally solvable group is amenable, and any free non-cyclic group is non-amenable. Since a subgroup of an amenable group is amenable itsef, then any group with an embedded free group of rank 2, is non-amenable. A hypothesis going back to this John von Neumann (1929) work, consists in amenablility of any group in which no free group of rank 2 can be emedded.
This leads to the concept of von Neumann alternative for a class $C$ of groups:
for a class $C$ of groups von Neumann alternative for amenability is valid, if for an arbitrary group $G$ from this class the following statement holds:
A group $G$ is either amenable or it contains a subgroup isomorphic to a free $F_2$ group of rank 2.
The original J. von Neumann hypothesis can be considered as von Neumann alternative for amenability for the class of all groups. The von Neumann alternative for amenability holds for the class of subgroups of groups with one definig relation as well as for the class of all groups satisfying small cancellation conditions.
In this work we establish the validity of von Neumann alternative for amenability of subgroups of $F$-groups. The following equivalence is shown for an arbitrary subgroup $G$ of any $F$-group:
A group $G$ is either amenable or it contains a subgroup isomorphic to a free $F_2$ group of rank 2.
Bibliography: 15 titles.
Keywords: Fuchsian groups, $F$-groups, amenable groups, Tits' alternative, von Neumann alternative.
Received: 31.03.2016
Accepted: 10.06.2016
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. G. Durnev, O. V. Zetkina, A. I. Zetkina, “On amenable subgroups of $F$-groups”, Chebyshevskii Sb., 17:2 (2016), 128–136
Citation in format AMSBIB
\Bibitem{DurZetZet16}
\by V.~G.~Durnev, O.~V.~Zetkina, A.~I.~Zetkina
\paper On amenable subgroups of $F$-groups
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 2
\pages 128--136
\mathnet{http://mi.mathnet.ru/cheb483}
\elib{https://elibrary.ru/item.asp?id=26254428}
Linking options:
  • https://www.mathnet.ru/eng/cheb483
  • https://www.mathnet.ru/eng/cheb/v17/i2/p128
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :72
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024