Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2012, Volume 13, Issue 2, Pages 124–130 (Mi cheb43)  

Periodic semi-groups in the ring of residue classes

V. E. Firstov

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: In this work the structure periodic semi-groups $S(m;n)$ have been learnt which are given by definite coorelation $X^n=X$, $n>1$ in the ring $Z_m$ of residue classes the modulo $m$. The main result which determines the structure $S(m;n)$ is expressed by correlation: $S(m;n)=\cup_{i\in I(m)}G(i)$, $G(i_1)\cap G(i_2)=\varnothing$, $i_1,i_2\in I_m$, $i_1\neq i_2$, where $G(i)$ — maximal undergroup (in sence [6]) is generated by idempotent $i$ of the semi-lattice $I(m)\subset Z_m$.
Received: 10.04.2012
Document Type: Article
UDC: 212; 512.532.5
Language: Russian
Citation: V. E. Firstov, “Periodic semi-groups in the ring of residue classes”, Chebyshevskii Sb., 13:2 (2012), 124–130
Citation in format AMSBIB
\Bibitem{Fir12}
\by V.~E.~Firstov
\paper Periodic semi-groups in the ring of residue classes
\jour Chebyshevskii Sb.
\yr 2012
\vol 13
\issue 2
\pages 124--130
\mathnet{http://mi.mathnet.ru/cheb43}
Linking options:
  • https://www.mathnet.ru/eng/cheb43
  • https://www.mathnet.ru/eng/cheb/v13/i2/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :109
    References:38
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024