Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2015, Volume 16, Issue 3, Pages 339–354 (Mi cheb423)  

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic independence of certain almost polyadic series

V. Yu. Matveev

Moscow Institute of Electromechanics and Automation
Full-text PDF (287 kB) Citations (1)
References:
Abstract: We study the arithmetic properties of almost polyadic numbers
$$\sum_{n=1}^\infty a_{i}\left(a_{i}+b_{i}\right)\ldots\left(a_{i}+\left(n-1\right)b_{i}\right),i=1,...,m,$$
where the numbers $a_{i},b_{i}\in\mathbb Z$, $\left(a_{i},b_{i}\right)=1$.
Bibliography: 15 titles.
Keywords: almost polyadic numbers.
Received: 15.06.2015
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. Yu. Matveev, “Algebraic independence of certain almost polyadic series”, Chebyshevskii Sb., 16:3 (2015), 339–354
Citation in format AMSBIB
\Bibitem{Mat15}
\by V.~Yu.~Matveev
\paper Algebraic independence of certain almost polyadic series
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 3
\pages 339--354
\mathnet{http://mi.mathnet.ru/cheb423}
\elib{https://elibrary.ru/item.asp?id=24398942}
Linking options:
  • https://www.mathnet.ru/eng/cheb423
  • https://www.mathnet.ru/eng/cheb/v16/i3/p339
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :71
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024