Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2015, Volume 16, Issue 2, Pages 79–92 (Mi cheb391)  

This article is cited in 5 scientific papers (total in 5 papers)

Polyhedral structures associated with quasi-metrics

M. M. Dezaa, E. I. Dezab, M. Dutour Sikirićc

a Ècole Normale Supérieure, Département de mathématiques et applications, Paris
b Moscow State Pedagogical University
c Rudjer Boškovic Institute
Full-text PDF (291 kB) Citations (5)
References:
Abstract: In this paper the problems of construction and description of cones and polyhedra of finite quasi-metrics are considered. These objects are asymmetrical analogs of classical finite metrics.
The introduction presents the historical background and examples of applications of metrics and quasi-metrics. In particular, the questions connected with maximum cut problem are represented.
In the first section definitions of finite metrics and semi-metrics are given, and also their major special cases are considered: cuts, muluticuts and hypersemimetrics. Cones and polyhedrons of the specified objects are constructed; their properties are investigated. Connections of the cut cone with metric $l_1$-spaces are indicated. The special attention is paid to symmetries of the constructed cones which consist of permutations and so-called switchings; transformation of a switching serves the basis for a choice of the inequalities defining the corresponding polyhedron.
In the second section finite quasi-metrics and quasi-semimetrics are considered. They are asymmetrical analogs of the usual finite metrics and semimetrics. Definition of the oriented cuts and oriented multicuts are given: they are the most important special cases of the quasi-semimetrics. Concept of weightable quasi-metrics and related to them partial metrics is introduced. Cones and polyhedrons of these objects are constructed; their properties are investigated. Connections of the oriented cut cone with quasi-metric $l_1$-space are considered. The special attention is paid to symmetries of the constructed cones, which consist of permutations and oriented switchings; as well as in symmetric case, transformation of the oriented switching serves the basis for a choice of the inequalities defining the corresponding polyhedron. Different approaches to creation of a cone and a polyhedron of asymmetrical hypersemimetrics are considered.
In the last section results of the calculations devoted to cones and to polyhedrons of quasi-semimetrics, the oriented cuts, the oriented multicuts, weighed quasimetrics and partial metrics for $3, 4, 5$ and $ 6$ points are considered. In fact, the dimension of an object, the number of its extreme rays (vertices) and their orbits, the number of its facets and their orbits, the diameters of the skeleton and the the ridge graph of the constructed cones and polyhedrons are specified.
Bibliography: 15 titles.
Keywords: Semi-metrics, cut and multicut, hypersemimetric, cones and polyhedra of semimetrics, cuts and hypersemimetrics, quasi-semimetrics, oriented cut and multicut, weightable metric, partial metric, cones of quasi-semimetrics, of oriented cuts and oriented multicuts, of weightable and partial metrics, polyhedra of quasi-semimetrics, of oriented cuts and multicuts, of weightable and partial metrics.
Received: 14.04.2015
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: M. M. Deza, E. I. Deza, M. Dutour Sikirić, “Polyhedral structures associated with quasi-metrics”, Chebyshevskii Sb., 16:2 (2015), 79–92
Citation in format AMSBIB
\Bibitem{DezDezDut15}
\by M.~M.~Deza, E.~I.~Deza, M.~Dutour Sikiri{\'c}
\paper Polyhedral structures associated with quasi-metrics
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 2
\pages 79--92
\mathnet{http://mi.mathnet.ru/cheb391}
\elib{https://elibrary.ru/item.asp?id=23614005}
Linking options:
  • https://www.mathnet.ru/eng/cheb391
  • https://www.mathnet.ru/eng/cheb/v16/i2/p79
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :100
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024