Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2015, Volume 16, Issue 1, Pages 163–175 (Mi cheb373)  

INTERNATIONAL CONFERENCE IN MEMORY OF A. A. KARATSUBA ON NUMBER THEORY AND APPLICATIONS

Simultaneous distribution of primitive lattice points in convex planar domain

O. A. Gorkusha

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (332 kB) (1)
References:
Abstract: Let $\Omega$ denote a compact convex subset of $\mathbf{R}^2$ which contains the origin as an inner point. Suppose that $\Omega$ is bounded by the curve $\partial \Omega,$ parametrized by $x=r_{\Omega}(\theta)\cos \theta,$ $y =r _{\Omega}(\theta)\sin \theta,$ where $r_{\Omega}$ is continuous and piecewise $C^3$ on $[0,\pi/4]$. For each real $R\ge 1$ we consider the domain $\Omega_R=\{(Rx,Ry) \vert (x,y) \in \Omega\}$ and we consider $\mathcal F (\Omega,R)=\{A\in \Omega_R\cap \mathbf{Z}^2 \vert A=(x,y), \text{НОД}(x,y)=1 \}$ — integer lattice points from $Q_R,$ which are visible from the origin. In this paper we study the simultaneous distribution for the lengths of the segments connecting the origin and a primitive lattice points from $\mathcal F (\Omega,R)$. Actually, we give an asymptotic formula
$$\frac{\#\Phi(R)}{\#\mathcal F (\Omega,R)} =2\int_0^{\beta}\!\!\!\int_{0}^{\alpha} [\alpha'+\beta'\ge 1]d\alpha' d\beta'+O\big(R^{-\frac{1}{3}}\log^{\frac{2}{3}} R\big),$$
where $[A]=1,$ if $A$ is true, $[A]=0,$ if $A$ is false and for $\alpha,\beta\in [0,1]$ the value $\#\Phi(R)$ is equal to the number of fundamental parallelograms of the lattice $\mathbf{Z}^2$ for which the lengths $d_1,d_2$ of the segments do not exceed $\alpha \cdot R\cdot r_{\Omega}(\theta_1)$, $\beta \cdot R\cdot r_{\Omega}(\theta_2)$.
Bibliography: 4 titles.
Keywords: primitive lattice points, simultaneous distribution.
Received: 25.02.2015
Bibliographic databases:
Document Type: Article
UDC: 511.9, 511.336
Language: Russian
Citation: O. A. Gorkusha, “Simultaneous distribution of primitive lattice points in convex planar domain”, Chebyshevskii Sb., 16:1 (2015), 163–175
Citation in format AMSBIB
\Bibitem{Gor15}
\by O.~A.~Gorkusha
\paper Simultaneous distribution of primitive lattice points in convex planar domain
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 1
\pages 163--175
\mathnet{http://mi.mathnet.ru/cheb373}
\elib{https://elibrary.ru/item.asp?id=23384582}
Linking options:
  • https://www.mathnet.ru/eng/cheb373
  • https://www.mathnet.ru/eng/cheb/v16/i1/p163
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :71
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024