|
About simultaneous representation of numbers by sum of primes
I. Allakov, A. Safarov Termez State University
Abstract:
In this paper proved theorem
Theorema. If $X$ -it is enough big, $\delta$ ($0<\delta<1$) it is enough small real numbers, that fair estimation
$$
J(\overrightarrow{b})>\frac{\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)^{1-\frac{\delta}{10(n-1)}}}{\Bigl(\ln\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)\Bigr)^{n+1}},
$$
for all vector $\overrightarrow{b}\in U(X)$ with the exclusion of no more than
$$
E(X)<X^{n-\frac{\delta}{17n^{3}}}
$$
the vector of them. Here $B=\max\{3|a_{ij}|\}$, $1\leq i \leq n$, $1\leq j \leq n+1$.
Received: 21.04.2012
Citation:
I. Allakov, A. Safarov, “About simultaneous representation of numbers by sum of primes”, Chebyshevskii Sb., 13:2 (2012), 12–17
Linking options:
https://www.mathnet.ru/eng/cheb30 https://www.mathnet.ru/eng/cheb/v13/i2/p12
|
|