Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2012, Volume 13, Issue 2, Pages 12–17 (Mi cheb30)  

About simultaneous representation of numbers by sum of primes

I. Allakov, A. Safarov

Termez State University
References:
Abstract: In this paper proved theorem
Theorema. If $X$ -it is enough big, $\delta$ ($0<\delta<1$) it is enough small real numbers, that fair estimation
$$ J(\overrightarrow{b})>\frac{\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)^{1-\frac{\delta}{10(n-1)}}}{\Bigl(\ln\Bigl(\frac{1}{\sqrt{n}}3(n!)^{2}B^{(2n-1)}|\overrightarrow{b}|\Bigr)\Bigr)^{n+1}}, $$
for all vector $\overrightarrow{b}\in U(X)$ with the exclusion of no more than
$$ E(X)<X^{n-\frac{\delta}{17n^{3}}} $$
the vector of them. Here $B=\max\{3|a_{ij}|\}$, $1\leq i \leq n$, $1\leq j \leq n+1$.
Received: 21.04.2012
Document Type: Article
UDC: 511.28
Language: Russian
Citation: I. Allakov, A. Safarov, “About simultaneous representation of numbers by sum of primes”, Chebyshevskii Sb., 13:2 (2012), 12–17
Citation in format AMSBIB
\Bibitem{AllSaf12}
\by I.~Allakov, A.~Safarov
\paper About simultaneous representation of numbers by sum of primes
\jour Chebyshevskii Sb.
\yr 2012
\vol 13
\issue 2
\pages 12--17
\mathnet{http://mi.mathnet.ru/cheb30}
Linking options:
  • https://www.mathnet.ru/eng/cheb30
  • https://www.mathnet.ru/eng/cheb/v13/i2/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024