Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2013, Volume 14, Issue 2, Pages 173–179 (Mi cheb281)  

This article is cited in 2 scientific papers (total in 2 papers)

On the speed of attainment of the remainder term exact boundaries in the Hecke–Kesten problem

A. V. Shutov

Vladimir State University
Full-text PDF (229 kB) Citations (2)
References:
Abstract: For irrationalities of bounded combinatorial type it is proved that the time of $\varepsilon$-approximation of exact boundary of the remainder term in Hecke-Kesten problem is inversely to $\varepsilon$.
Keywords: uniform distribution, Hecke–Kesten problem, three length theorem.
Received: 05.05.2013
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. V. Shutov, “On the speed of attainment of the remainder term exact boundaries in the Hecke–Kesten problem”, Chebyshevskii Sb., 14:2 (2013), 173–179
Citation in format AMSBIB
\Bibitem{Shu13}
\by A.~V.~Shutov
\paper On the speed of attainment of the remainder term exact boundaries in the Hecke--Kesten problem
\jour Chebyshevskii Sb.
\yr 2013
\vol 14
\issue 2
\pages 173--179
\mathnet{http://mi.mathnet.ru/cheb281}
Linking options:
  • https://www.mathnet.ru/eng/cheb281
  • https://www.mathnet.ru/eng/cheb/v14/i2/p173
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :77
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024