|
Asymptotical formula for fractional moments of some Dirichlet series
S. A. Gritsenko, L. N. Kurtova Belgorod State University, Pobedy str., 85, Belgorod, 308015, Russia
Abstract:
Let $v \in \mathbf{N}$. Let the function $\Phi(T)$ arbitrarily slow tend to $+\infty$ with $T \rightarrow +\infty $. The asymptotical formulas for fractional moments of the Riemann zeta-function $\int\limits_T^{2T}|\zeta(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\ln T}\le \sigma<1$ and for fractional moments of the arithmetical Dirichlet series of second degree from Selberg's class $\int\limits_T^{2T}|L(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\sqrt{\ln T}}\le \sigma<1$, are obtained.
Received: 25.03.2013
Citation:
S. A. Gritsenko, L. N. Kurtova, “Asymptotical formula for fractional moments of some Dirichlet series”, Chebyshevskii Sb., 14:1 (2013), 18–33
Linking options:
https://www.mathnet.ru/eng/cheb255 https://www.mathnet.ru/eng/cheb/v14/i1/p18
|
Statistics & downloads: |
Abstract page: | 274 | Full-text PDF : | 110 | References: | 50 | First page: | 1 |
|