Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 2, Pages 296–317
DOI: https://doi.org/10.22405/2226-8383-2024-25-2-296-317
(Mi cheb1434)
 

HISTORY OF MATHEMATICS AND APPLICATIONS

Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations

N. A. Zverev, A. V. Zemskov, V. M. Yaganov

Moscow Aviation Institute (National Research Institute) (Moscow)
References:
Abstract: A one-dimensional initial-boundary value problem for a hollow orthotropic multicomponent cylinder under the action of volumetric elastic diffusion perturbations is considered. The mathematical model includes a system of equations of elastic diffusion in a cylindrical coordinate system, which takes into account relaxation diffusion effects, implying finite propagation velocities of diffusion flows.
The problem is solved by the method of equivalent boundary conditions. To do this, we consider some auxiliary problem, the solution of which can be obtained by expanding into series in terms of eigenfunctions of the elastic diffusion operator. Next, we construct relations that connect the right-hand sides of the boundary conditions of both problems, which are a system of Volterra integral equations of the first kind. A calculation example for a three-component hollow cylinder is considered.
Keywords: elastic diffusion, unsteady problems, Laplace transform, Green's functions, method of equivalent boundary conditions, hollow cylinder.
Funding agency Grant number
Russian Science Foundation 23-21-00189
Received: 31.08.2023
Accepted: 28.06.2024
Document Type: Article
UDC: 539.3, 539.8
Language: Russian
Citation: N. A. Zverev, A. V. Zemskov, V. M. Yaganov, “Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations”, Chebyshevskii Sb., 25:2 (2024), 296–317
Citation in format AMSBIB
\Bibitem{ZveZemYag24}
\by N.~A.~Zverev, A.~V.~Zemskov, V.~M.~Yaganov
\paper Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 2
\pages 296--317
\mathnet{http://mi.mathnet.ru/cheb1434}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-2-296-317}
Linking options:
  • https://www.mathnet.ru/eng/cheb1434
  • https://www.mathnet.ru/eng/cheb/v25/i2/p296
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024