Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 2, Pages 243–250
DOI: https://doi.org/10.22405/2226-8383-2024-25-2-243-250
(Mi cheb1429)
 

BRIEF MESSAGE

Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients

S. E. Nohrin, V. T. Shevaldin

Krasovskii Institute of Mathematics and Mechanics (Ural Branch) of the RAS (Yekaterinburg)
References:
Abstract: The paper discusses a difference equation of the form $\sum_{l=0}^{r}a_{k,l}Z_{k+l}=y_{k}\ (k\in \mathbb{Z})$, where $r\in \mathbb{N},\ y=\{y_k\}_{k\in \mathbb{Z}}$ is a given numerical sequence from the space ${{l}_{p}}\ (1\le p<\infty)$, provided that the matrix $A=(a_{k,l})$, $a_{k,l}\in \mathbb{R}$, satisfies some condition close to the presence of a dominant diagonal. With the help of the fixed point theorem, sufficient conditions are written for the coefficients $a_{k,l}$, at which the equation has a unique solution $Z=\{ Z_{k}\}_{k\in \mathbb{Z}}$, belonging to the space $l_p$. For the norm of this solution, a numerical estimate is given from above.
Keywords: difference equation, sequences, space $l_p$, solution norm.
Received: 13.04.2024
Accepted: 28.06.2024
Document Type: Article
UDC: 517, 518.85
Language: Russian
Citation: S. E. Nohrin, V. T. Shevaldin, “Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients”, Chebyshevskii Sb., 25:2 (2024), 243–250
Citation in format AMSBIB
\Bibitem{NohShe24}
\by S.~E.~Nohrin, V.~T.~Shevaldin
\paper Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 2
\pages 243--250
\mathnet{http://mi.mathnet.ru/cheb1429}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-2-243-250}
Linking options:
  • https://www.mathnet.ru/eng/cheb1429
  • https://www.mathnet.ru/eng/cheb/v25/i2/p243
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:25
    Full-text PDF :11
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024