Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 1, Pages 164–169
DOI: https://doi.org/10.22405/2226-8383-2024-25-1-164-169
(Mi cheb1409)
 

BRIEF MESSAGE

On coprime elements of the Beatty sequence

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University (Moscow)
References:
Abstract: This note discusses two applications of the asymptotic formula obtained by the authors for the number of values of the Beatty sequence in an arithmetic progression with increasing difference: asymptotic formulas are obtained for the number of elements of the Beatty sequence that are coprime to the (possibly growing) natural number $a$, as well as for the number of pairs of coprime elements of two Beatty sequences. Here are the main results.
Let $\alpha>1$ be an irrational number and $N$ be a sufficiently large natural number. Then if the partial quotients of the continued fraction of the number $\alpha$ are limited, then for the number $S_{\alpha,a}(N)$ of elements of the Beatty sequence $[\alpha n]$, $1\leqslant n\leqslant N$, coprime to the number $a$, the following asymptotic formula holds
$$ S_{\alpha,a}(N)=N\frac{\varphi(a)}{a} + O\left(\min(\sigma(a)\ln^3 N, \sqrt{N}\tau( a)(\ln\ln N)^3)\right), $$
where $\tau(a)$ is the number of divisors of $a$ and $\sigma(a)$ is the sum of the divisors of $a$.
Let $\alpha>1$ and $\beta>1$ be irrational numbers and $N$ be a sufficiently large natural number. Then if the incomplete quotients of continued fractions of the numbers $\alpha$ and $\beta$ are bounded, then for the number $S_{\alpha,\beta}(N)$ of pairs of coprime elements of Beatty sequences $[\alpha m]$, $1\leqslant m\leqslant N$, and $[\beta n]$, $1\leqslant n\leqslant N$, the following asymptotic formula holds
$$ S_{\alpha,\beta}(N)=\frac{6}{\pi^2}N^2 + O\left(N^{3/2}(\ln\ln N)^6 \right). $$
Keywords: Beatty sequence, coprime numbers, asymptotic formula.
Received: 14.11.2023
Accepted: 21.03.2024
Document Type: Article
UDC: 511.35, 517.15
Language: Russian
Citation: A. V. Begunts, D. V. Goryashin, “On coprime elements of the Beatty sequence”, Chebyshevskii Sb., 25:1 (2024), 164–169
Citation in format AMSBIB
\Bibitem{BegGor24}
\by A.~V.~Begunts, D.~V.~Goryashin
\paper On coprime elements of the Beatty sequence
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 1
\pages 164--169
\mathnet{http://mi.mathnet.ru/cheb1409}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-1-164-169}
Linking options:
  • https://www.mathnet.ru/eng/cheb1409
  • https://www.mathnet.ru/eng/cheb/v25/i1/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :22
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024