Loading [MathJax]/jax/output/SVG/config.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 5, Pages 49–69
DOI: https://doi.org/10.22405/2226-8383-2023-24-5-49-69
(Mi cheb1373)
 

A proof of the L'Hôpital's rule

I. B. Kazakovab

a Moscow Institute of Physics and Technology (Moscow)
b Plehanov Russian State University (Moscow)
References:
Abstract: In this paper a new proof of the L'Hôpital's rule proposed for calculus lecturers is presented. The according theorem is formulated and proved for the six types of limit: $x \to a$, $x \to a + 0$, $x \to a - 0$, $x \to +\infty$, $x \to -\infty$, $x \to +\infty$, for the two indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$ and also for four values of limit $A \in (-\infty, +\infty)$, $A = -\infty$, $A = +\infty$, $A = \infty$. Thus, the theorem covers $6 * 2 * 4 = 48$ cases of the L'Hôpital's rule. The presented proof of the theorem differs from the traditional ones by using not only the Cachy definition of limit a function but also the Heine one. The single partial limit theorem is used as the important auxiliary statement allowing to apply the Heine definition of limit. This statement also allows to apply arithmetic properties of sequence limits to the proof of the indeterminate form $\frac{\infty}{\infty}$ and the limit $x \to a + 0$, i.e. for the case where the most significant simplification is achieved.
Keywords: the L'Hôpital's rule, partial limits, Heine definition of a limit of a function, calculus for the first-year students.
Received: 08.10.2023
Accepted: 21.12.2023
Document Type: Article
UDC: 517.28
Language: Russian
Citation: I. B. Kazakov, “A proof of the L'Hôpital's rule”, Chebyshevskii Sb., 24:5 (2023), 49–69
Citation in format AMSBIB
\Bibitem{Kaz23}
\by I.~B.~Kazakov
\paper A proof of the L'H\^opital's rule
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 5
\pages 49--69
\mathnet{http://mi.mathnet.ru/cheb1373}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-5-49-69}
Linking options:
  • https://www.mathnet.ru/eng/cheb1373
  • https://www.mathnet.ru/eng/cheb/v24/i5/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :96
    References:25
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025