Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 341–344
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-341-344
(Mi cheb1363)
 

BRIEF MESSAGES

Factor and arithmetic complexity of concatenating the $n!$

A. Duaaa, M. Meisamib

a Moscow Institute of Physics and Technology (Moscow, Russia)
b University of Isfahan (Isfahan, Iran)
References:
Abstract: In this paper, we show that factor complexity of the infinite word $\mathfrak{F}_b$ is defined by concatenating base-$b$ representations of the $n!$ is full. Then we show that the arithmetic complexity of this word is full as well. On the other hand, $\mathfrak{F}_b$ is a disjunctive word. In number theory, this kind of words is called rich numbers.
Keywords: factor complexity, equidistributed modulo $1$, Weyl's criterion, digital problems, factorials.
Received: 27.09.2023
Accepted: 11.12.2023
Document Type: Article
UDC: 517
Language: English
Citation: A. Duaa, M. Meisami, “Factor and arithmetic complexity of concatenating the $n!$”, Chebyshevskii Sb., 24:4 (2023), 341–344
Citation in format AMSBIB
\Bibitem{DuaMei23}
\by A.~Duaa, M.~Meisami
\paper Factor and arithmetic complexity of concatenating the $n!$
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 341--344
\mathnet{http://mi.mathnet.ru/cheb1363}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-341-344}
Linking options:
  • https://www.mathnet.ru/eng/cheb1363
  • https://www.mathnet.ru/eng/cheb/v24/i4/p341
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :10
    References:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024