Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 252–263
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-252-263
(Mi cheb1357)
 

On Some arithmetic applications to the theory of symmetric groups

U. M. Pachevab, R. A. Dokhova, A. H. Kodzokovb, M. S. Nirovab

a North–Caucasus Federal University (Stavropol)
b Berbekov Kabardino–Balkarian State University (Nalchik)
References:
Abstract: The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group $S_{n}$ of degree $n$ of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned $k$, $\varphi(k)$, and $k \varphi(k)$, where $k \leq n$, $\varphi$ – Euler function, those representations jf grups $\left( \mathbb{Z} / k\mathbb{Z}, + \right)$, $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ and theorem product in the form of degree substitutions $k$. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley's theorem, but along with this, a linear binomial is used $\mathbb{Z} / k\mathbb{Z}$ residue class rings, where $\gcd\left(a, k\right) = 1$.
In addition, the result concerning the isomorphic embedding of a group $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ in to a group $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ in to a group $S_{k}$ extends to an alternating group $A_{k}$ for odd $k$.
The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group $S_{n}$. In particular, applying the Euler-Maclaurin summation formula and bounds for the $k$ in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group $S_{n}$.
Keywords: symmetric group, subgroup order, modulo congruence, Euler function, substitution sign, quadratic residnes, permutation polynomial, prime divisor of cyclic subgroup order.
Received: 21.08.2023
Accepted: 11.12.2023
Document Type: Article
UDC: 511.512
Language: Russian
Citation: U. M. Pachev, R. A. Dokhov, A. H. Kodzokov, M. S. Nirova, “On Some arithmetic applications to the theory of symmetric groups”, Chebyshevskii Sb., 24:4 (2023), 252–263
Citation in format AMSBIB
\Bibitem{PacDokKod23}
\by U.~M.~Pachev, R.~A.~Dokhov, A.~H.~Kodzokov, M.~S.~Nirova
\paper On Some arithmetic applications to the theory of symmetric groups
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 252--263
\mathnet{http://mi.mathnet.ru/cheb1357}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-252-263}
Linking options:
  • https://www.mathnet.ru/eng/cheb1357
  • https://www.mathnet.ru/eng/cheb/v24/i4/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :32
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024