Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 191–205
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-191-205
(Mi cheb1353)
 

On bijective functions of fixed variables in the Galois field of $p^k$ elements and on the ring of $p$-adic integers for an odd prime number $p$

A. Lopez Perezab, O. Cuellar Justizcd

a Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University (Moscow)
b Central University “Marta Abreu” of Las Villas (Kyba, Santa Clara)
c Tula State Lev Tolstoy Pedagogical Institute (Tula)
d University of Informatics Sciences (Kuba, Havana)
References:
Abstract: In this paper there are given necessary and sufficient conditions under which a function of fixed variables $\psi{:} \mathbb{F}_{q}^{i+1}\to\mathbb{F}_{q}$ is bijective, where $ i\in\mathbb{N}\cup\{0\}$, $\mathbb{F}_{q}^{i+1} $ is the $(i+1)$-ary Cartesian power of the Galois field $\mathbb{F}_{q}$ of $ q=p^k $ elements, $ p $ is an odd prime number and $k\in\mathbb{N}$. In addition, such conditions of the bijective functions $\psi$ of fixed variables are used to write a criterion for the preserving Haar measure of functions from the important class of 1-Lipschitz functions in terms of its coordinate functions on the ring of $p$-adic integers $\mathbb{Z}_p, p\neq2$. In particular, the representation of 1-Lipschitz functions in terms of its coordinate functions on the ring of $2$-adic integers $ \mathbb{Z}_2$ turned out to be a general and useful tool for obtaining mathematical results applied in cryptography. In this work, the research of such representation of 1-Lipschitz functions on the ring of $p$-adic integers $ \mathbb{Z}_p,p\neq2$ is being continued, with special attention to the representation of bijective 1-Lipschitz functions in terms of its coordinate functions on $ \mathbb{Z}_p, p\neq2$.
Keywords: Galois field, bijective function, $1$-Lipschitz function, Haar measure, Haar measure-preserving function, coordenate function, ergodic function.
Received: 31.05.2023
Accepted: 11.12.2023
Document Type: Article
UDC: 517
Language: Russian
Citation: A. Lopez Perez, O. Cuellar Justiz, “On bijective functions of fixed variables in the Galois field of $p^k$ elements and on the ring of $p$-adic integers for an odd prime number $p$”, Chebyshevskii Sb., 24:4 (2023), 191–205
Citation in format AMSBIB
\Bibitem{LopCue23}
\by A.~Lopez Perez, O.~Cuellar Justiz
\paper On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 191--205
\mathnet{http://mi.mathnet.ru/cheb1353}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-191-205}
Linking options:
  • https://www.mathnet.ru/eng/cheb1353
  • https://www.mathnet.ru/eng/cheb/v24/i4/p191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024