Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 104–136
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-104-136
(Mi cheb1351)
 

Universality and antiuniversality theorems for zeta functions of monoids of natural numbers

M. N. Dobrovol'skiia, N. N. Dobrovol'skiib, A. V. Afoninab, N. M. Dobrovol'skiib, I. N. Balabab, I. Yu. Rebrovab

a Geophysical centre of RAS (Moscow)
b Tula State Lev Tolstoy Pedagogical University (Tula)
References:
Abstract: Classes of monoids were identified for which the condition of the generalized Selberg lemma is satisfied, for which the strong Selberg–Bredikhin condition is satisfied, and for which the strengthened asymptotic law in Bredikhin form is satisfied. For these classes of monoids, new results on analytical continuation to the left of the abscissa of absolute convergence are obtained. An analogue of the main lemma of S. M. Voronin is obtained from the work on the universality of the Riemann zeta function in the case of zeta functions of a monoid for which the condition of the generalized Selberg lemma or the stronger Selberg–Bredikhin condition is satisfied.
For the class of regular Selberg–Bredikhin monoids of natural numbers, we succeeded in proving the universality theorem for the zeta function of the corresponding monoid.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
Funding agency Grant number
Russian Science Foundation 22-21-00544
The reported study was funded by the RSF grant №22-21-00544 “Zeta function of monoids of naturalnumbers and related issues”.
Received: 13.08.2023
Accepted: 11.12.2023
Document Type: Article
UDC: 511.3
Language: Russian
Citation: M. N. Dobrovol'skii, N. N. Dobrovol'skii, A. V. Afonina, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “Universality and antiuniversality theorems for zeta functions of monoids of natural numbers”, Chebyshevskii Sb., 24:4 (2023), 104–136
Citation in format AMSBIB
\Bibitem{DobDobAfo23}
\by M.~N.~Dobrovol'skii, N.~N.~Dobrovol'skii, A.~V.~Afonina, N.~M.~Dobrovol'skii, I.~N.~Balaba, I.~Yu.~Rebrova
\paper Universality and antiuniversality theorems for zeta functions of monoids of natural numbers
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 104--136
\mathnet{http://mi.mathnet.ru/cheb1351}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-104-136}
Linking options:
  • https://www.mathnet.ru/eng/cheb1351
  • https://www.mathnet.ru/eng/cheb/v24/i4/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :33
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024