Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 78–84
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-78-84
(Mi cheb1349)
 

On the chromatic number of slices without monochromatic unit arithmetic progressions

V. O. Kirova

Lomonosov Moscow State University (Moscow)
References:
Abstract: For $h,n\geq 1$ and $e>0$ we consider a chromatic number of the spaces $\mathbb{R}^n\times[0, e]^h$ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any $n$ there exists a two-coloring of $\mathbb{R}^n$ such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form $\mathbb{R}^n\times[0, e]^h$.
Keywords: chromatic number, Hadwiger–Nelson problem.
Received: 18.09.2023
Accepted: 11.12.2023
Document Type: Article
UDC: 517
Language: English
Citation: V. O. Kirova, “On the chromatic number of slices without monochromatic unit arithmetic progressions”, Chebyshevskii Sb., 24:4 (2023), 78–84
Citation in format AMSBIB
\Bibitem{Kir23}
\by V.~O.~Kirova
\paper On the chromatic number of slices without monochromatic unit arithmetic progressions
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 78--84
\mathnet{http://mi.mathnet.ru/cheb1349}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-78-84}
Linking options:
  • https://www.mathnet.ru/eng/cheb1349
  • https://www.mathnet.ru/eng/cheb/v24/i4/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024