Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 4, Pages 212–238
DOI: https://doi.org/10.22405/2226-8383-2023-24-4-212-238
(Mi cheb1341)
 

Invariant differential polynomials

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences (Moscow)
References:
Abstract: Based on the method proposed in the article for solving the so-called $(r,s)$-systems of linear equations proven that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}{2}$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s=1,2,3,4$, and for $n=4$ for all orders from 4 to 10. The only, up to factors, homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials ($s=0$ ) and the Wronskian ($s=(n-1)n/2$). The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s<\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
Keywords: derivative, differential, system of linear equations, simplex, invariant differential operator
Received: 13.04.2023
Accepted: 11.12.2023
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: F. M. Malyshev, “Invariant differential polynomials”, Chebyshevskii Sb., 24:4 (2023), 212–238
Citation in format AMSBIB
\Bibitem{Mal23}
\by F.~M.~Malyshev
\paper Invariant differential polynomials
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 4
\pages 212--238
\mathnet{http://mi.mathnet.ru/cheb1341}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-4-212-238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4705793}
Linking options:
  • https://www.mathnet.ru/eng/cheb1341
  • https://www.mathnet.ru/eng/cheb/v24/i4/p212
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :17
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024