Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 2, Pages 15–37
DOI: https://doi.org/10.22405/2226-8383-2023-24-2-15-37
(Mi cheb1306)
 

On the exceptional set of a system of linear equations with prime numbers

I. A. Allakov, B. Kh. Abrayev

Termez State University (Termez,Uzbekistan)
References:
Abstract: Let $X$ — be a sufficiently large real number, $b_{1},b_{2}$-integers with $1\le{{b}_{1}},{{b}_{2}}\le X, {{a}_{ij}}$,$(i=1,2; j=\overline{1,4})$ — positive integers, $ {{p}_{ 1}}, \ldots ,{{p}_{4}}- $prime numbers. Let $ B=\max\left\{ 3\left|{{a}_{ij}}\right| \right\},$ $({{i=1,2;j=\overline{1,4}}}),$ $\bar{b}=(b_{1},b_{2}),$ $K= 9\sqrt{2}B^{3}\left|\bar{b} \right|,$
$E_{2,4}(X)= \left\{{{b}_{i}} \bigm| 1\leq b_{i}\leq X, {{b}_{i}}\ne {{a}_{i1}}{{p}_{1}}+\cdots +{{a}_{i4}}{{p}_{4}}, i=1,2\right\}.$
The paper studies the solvability of a system of linear equations $ {{ b}_{i}}= {{a}_{i1}}{{p}_{1}}+\cdots +{{a}_{i4}}{{p}_{4}}, i=1,2,$ in primes $p_{1},\ldots,p_{4}$ and for the first time a power estimate for the exceptional set $E_{2,4}(X)$ and a lower estimate for $ R(\bar b)$ — the number of solutions of the system under consideration in prime numbers, are obtained, namely, that if $X$ is sufficiently large and $ \delta (0<\delta<1) $ is sufficiently small real numbers, then: there exists a sufficiently large number $ A, $ such that for $ X>{{B}^ {A}} $ estimate is fair ${{E}_{2,4}}(X)< {{X}^{2-\delta }};$ and for $ R(\bar b) $ given $ \bar {b}=(b_{1},b_{2}),$ $1\le b_{1},b_{2} \le X $ fair estimate $R(\bar{b})\ge {K}^{2- {\delta }}{{\left( \ln K \right)^{-4}}}, $ for all $ \bar b=(b_{1},b_{2})$ except for at most $ {X}^{2-{\delta}}$ pairs of them.
Keywords: equation, system of linear equations, prime numbers, integer coefficients, natural numbers, determinant, solvability criteria, set, cardinality of a set, estimate, power estimate, Dirichlet series, Dirichlet character, exceptional zero.
Received: 01.04.2023
Accepted: 14.06.2023
Document Type: Article
UDC: 511.524
Language: Russian
Citation: I. A. Allakov, B. Kh. Abrayev, “On the exceptional set of a system of linear equations with prime numbers”, Chebyshevskii Sb., 24:2 (2023), 15–37
Citation in format AMSBIB
\Bibitem{AllAbr23}
\by I.~A.~Allakov, B.~Kh.~Abrayev
\paper On the exceptional set of a system of linear equations with prime numbers
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 2
\pages 15--37
\mathnet{http://mi.mathnet.ru/cheb1306}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-2-15-37}
Linking options:
  • https://www.mathnet.ru/eng/cheb1306
  • https://www.mathnet.ru/eng/cheb/v24/i2/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :30
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024