Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2023, Volume 24, Issue 1, Pages 182–193
DOI: https://doi.org/10.22405/2226-8383-2023-24-1-182-193
(Mi cheb1289)
 

On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$

M. Sh. Shabozova, G. A. Yusupovb

a Tajik National University (Tajikistan, Dushanbe)
b Tajik National University (Tajikistan, Dushanbe)
References:
Abstract: Exact inequalities are found between the best polynomial approximation of functions analytics in the disk $U_R:=\bigl\{z\in\mathbb{C}, |z|<R\bigr\},$ $R\ge1$ and the averaged modulus of continuity angular boundary values of the $m$th order derivatives. For the class $W_{q,R}^{(m)} \ (m\in\mathbb{Z}_+,$ $1\le q\le\infty, R\ge1)$ of functions $f\in H_{q,R}^{(m)}$ whose $m$-order derivatives $f^{(m)}$ belong to the Hardy space $H_{q,R}$ and satisfy the condition $\|f ^{(m)}\|_{q,R}\le1,$ the exact values of the upper bounds of the best approximations are calculated. Moreover, for the class $W^{(m)}_{q,R}(\Phi),$ consisting of all functions $f\in H_{q,R}^{(m)},$ for which any $k\in\mathbb{N}, m\in\mathbb{Z}_{+}, k>m$ the averaged moduli of continuity of the boundary values of the $m$th order derivative $f^{(m )},$ dominated in the system of points $\{\pi/k\}_{k\in\mathbb{N}}$ by the given function $\Phi,$ satisfy the condition
\begin{equation*} \int\limits_{0}^{\pi/k}\omega\bigl(f^{(m)},t\bigr)_{q,R}dt\le\Phi(\pi/k), \end{equation*}
the exact values of the Kolmogorov and Bernstein $n$-widths are calculated in the norm of the space $H_{q} \ (1\le q\le\infty).$
The results obtained generalize some results of L.V.Taikov on classes of analytic functions in a circle of radius $R\ge1.$
Keywords: the best approximation, Hardy space, modulus of continuity, majorizing function, $n$-widths.
Received: 23.11.2022
Accepted: 24.04.2023
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, G. A. Yusupov, “On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$”, Chebyshevskii Sb., 24:1 (2023), 182–193
Citation in format AMSBIB
\Bibitem{ShaYus23}
\by M.~Sh.~Shabozov, G.~A.~Yusupov
\paper On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
\jour Chebyshevskii Sb.
\yr 2023
\vol 24
\issue 1
\pages 182--193
\mathnet{http://mi.mathnet.ru/cheb1289}
\crossref{https://doi.org/10.22405/2226-8383-2023-24-1-182-193}
Linking options:
  • https://www.mathnet.ru/eng/cheb1289
  • https://www.mathnet.ru/eng/cheb/v24/i1/p182
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024