Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 5, Pages 145–151
DOI: https://doi.org/10.22405/2226-8383-2022-23-5-145-151
(Mi cheb1261)
 

BRIEF MESSAGES

On the intersection of two homogeneous Beatty sequences

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University (Moscow)
References:
Abstract: Homogeneous Beatty sequences are sequences of the form $a_n=[\alpha n]$, where $\alpha$ is a positive irrational number. In 1957 T. Skolem showed that if the numbers $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers, then the sequences $[\alpha n]$ and $[\beta n]$ have infinitely many elements in common. T. Bang strengthened this result: denote $S_{\alpha,\beta}(N)$ the number of natural numbers $k$, $1\leqslant k\leqslant N$, that belong to both Beatty sequences $[\alpha n]$, $[\beta m]$, and the numbers $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers, then $S_{\alpha,\beta}(N)\sim \frac{N}{\alpha\beta}$ for $N\to\infty.$
In this paper, we prove a refinement of this result for the case of algebraic numbers. Let $\alpha,\beta>1$ be irrational algebraic numbers such that $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers. Then for any $\varepsilon>0$ the following asymptotic formula holds:
$$S_{\alpha,\beta}(N)=\frac{N}{\alpha\beta}+O\bigl(N^{\frac12+\varepsilon}\bigr), N\to\infty.$$
Keywords: homogeneous Beatty sequence, exponential sums, asymptotic formula.
Received: 15.06.2022
Accepted: 22.12.2022
Document Type: Article
UDC: 511.35, 517.15
Language: Russian
Citation: A. V. Begunts, D. V. Goryashin, “On the intersection of two homogeneous Beatty sequences”, Chebyshevskii Sb., 23:5 (2022), 145–151
Citation in format AMSBIB
\Bibitem{BegGor22}
\by A.~V.~Begunts, D.~V.~Goryashin
\paper On the intersection of two homogeneous Beatty sequences
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 5
\pages 145--151
\mathnet{http://mi.mathnet.ru/cheb1261}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-5-145-151}
Linking options:
  • https://www.mathnet.ru/eng/cheb1261
  • https://www.mathnet.ru/eng/cheb/v23/i5/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :31
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024