Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 5, Pages 117–129
DOI: https://doi.org/10.22405/2226-8383-2022-23-5-117-129
(Mi cheb1259)
 

The Ritz method for solving partial differential equations using number-theoretic grids

A. V. Rodionov

Tula State Lev Tolstoy Pedagogical University (Tula)
References:
Abstract: Consider the problem
\begin{gather*} L u(\vec x) = f(\vec x), \\ u(\vec x)\big|_{\partial {G_s}}\big.=g(\vec x), \end{gather*}
where $f(\vec x), g(\vec x) \in E_s^{\alpha}$, $L$ is a linear differential operator with constant coefficients, $G_s$ is the unit cube $[0; 1]^s$.
Its solution is reduced to finding the minimum of the functional
\begin{equation*} v(u(\vec x)) =\underset{G_s}{\int\ldots\int} F\left(\vec x, u, u_{x_1}, \ldots, u_{x_s}\right) dx_1\ ldots dx_s \end{equation*}
under given boundary conditions.
The values of the functional $v(u(\vec x))$ in the Ritz method are considered not on the set of all admissible functions $u(\vec x)$, but on linear combinations
$$ u(\vec x) = W_0(\vec x) + \sum_{k=1}^{n}w_kW_k(\vec x), $$
where $W_k(\vec x)$ are some basic functions that we will find using number-theoretic interpolation, and $W_0(\vec x)$ is a function that satisfies the given boundary conditions, and the rest $W_k( \vec x)$ satisfy homogeneous boundary conditions.
On these polynomials, this functional turns into a function $\varphi (\vec w)$ of the coefficients $w_1, \ldots, w_n$. These coefficients are chosen so that the function $\varphi (\vec w)$ reaches an extremum. Under some restrictions on the functional $v(u(\vec x))$ and the basis functions $W_k(\vec x)$, we obtain an approximate solution of the boundary value problem.
Keywords: number-theoretic method, partial differential equations, variational methods.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 073-03-2022-117/7
Received: 24.07.2022
Accepted: 22.12.2022
Document Type: Article
UDC: 517
Language: Russian
Citation: A. V. Rodionov, “The Ritz method for solving partial differential equations using number-theoretic grids”, Chebyshevskii Sb., 23:5 (2022), 117–129
Citation in format AMSBIB
\Bibitem{Rod22}
\by A.~V.~Rodionov
\paper The Ritz method for solving partial differential equations using number-theoretic grids
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 5
\pages 117--129
\mathnet{http://mi.mathnet.ru/cheb1259}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-5-117-129}
Linking options:
  • https://www.mathnet.ru/eng/cheb1259
  • https://www.mathnet.ru/eng/cheb/v23/i5/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:87
    Full-text PDF :68
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024