|
BRIEF MESSAGES
Delsarte problem for 4-designs on the unit 3-sphere
D. V. Gorbachev, I. A. Martyanov Tula State University (Tula)
Abstract:
The extremal Delsarte problem $A(d,s)$ for spherical $s$-designs allows us to estimate from below the minimum number of nodes $N(d,s)$ of a weighted quadrature formula on the sphere $\mathbb{S}^{d}$. We prove that
$$
A(3,4)=14.560317967882\ldots.
$$
Hence $N(3,4)\ge 15$. Our open conjecture is that $N(3,4)=16$.
Keywords:
unit sphere, spherical design, quadrature formula, Delsarte problem.
Received: 01.10.2022 Accepted: 08.12.2022
Citation:
D. V. Gorbachev, I. A. Martyanov, “Delsarte problem for 4-designs on the unit 3-sphere”, Chebyshevskii Sb., 23:4 (2022), 157–161
Linking options:
https://www.mathnet.ru/eng/cheb1231 https://www.mathnet.ru/eng/cheb/v23/i4/p157
|
Statistics & downloads: |
Abstract page: | 54 | Full-text PDF : | 20 | References: | 21 |
|