|
BRIEF MESSAGES
Weighted Carleman inequality for fractional gradient
D. V. Gorbachev Tula State University (Tula)
Abstract:
We prove the weighted Carleman inequality for the fractional gradient
$$
\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{-\gamma}f\|_{q}\le C\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{\bar{\gamma}-\bar{\delta}}\nabla^{\alpha}f\|_{p}, f\in C_{0}^{\infty}(\mathbb{R}^{d}), t\ge 0.
$$
For $\alpha=1$, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential $|\nabla^{\alpha}f|\le V|f|$ in a weighted Sobolev space.
Keywords:
Carleman's inequality, fractional gradient, Fourier transform, Pitt's inequality, differential inequality.
Received: 01.10.2022 Accepted: 08.12.2022
Citation:
D. V. Gorbachev, “Weighted Carleman inequality for fractional gradient”, Chebyshevskii Sb., 23:4 (2022), 152–156
Linking options:
https://www.mathnet.ru/eng/cheb1230 https://www.mathnet.ru/eng/cheb/v23/i4/p152
|
Statistics & downloads: |
Abstract page: | 50 | Full-text PDF : | 18 | References: | 17 |
|