Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 4, Pages 152–156
DOI: https://doi.org/10.22405/2226-8383-2022-23-4-152-156
(Mi cheb1230)
 

BRIEF MESSAGES

Weighted Carleman inequality for fractional gradient

D. V. Gorbachev

Tula State University (Tula)
References:
Abstract: We prove the weighted Carleman inequality for the fractional gradient
$$ \|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{-\gamma}f\|_{q}\le C\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{\bar{\gamma}-\bar{\delta}}\nabla^{\alpha}f\|_{p}, f\in C_{0}^{\infty}(\mathbb{R}^{d}), t\ge 0. $$
For $\alpha=1$, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential $|\nabla^{\alpha}f|\le V|f|$ in a weighted Sobolev space.
Keywords: Carleman's inequality, fractional gradient, Fourier transform, Pitt's inequality, differential inequality.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This Research was performed by a grant of Russian Science Foundation (project 18-11-00199), https://rscf.ru/project/18-11-00199/.
Received: 01.10.2022
Accepted: 08.12.2022
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, “Weighted Carleman inequality for fractional gradient”, Chebyshevskii Sb., 23:4 (2022), 152–156
Citation in format AMSBIB
\Bibitem{Gor22}
\by D.~V.~Gorbachev
\paper Weighted Carleman inequality for fractional gradient
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 4
\pages 152--156
\mathnet{http://mi.mathnet.ru/cheb1230}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-4-152-156}
Linking options:
  • https://www.mathnet.ru/eng/cheb1230
  • https://www.mathnet.ru/eng/cheb/v23/i4/p152
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :19
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024