Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2008, Volume 9, Issue 1, Pages 4–8 (Mi cheb123)  

This article is cited in 1 scientific paper (total in 1 paper)

On the Goldbañh-numbers

I. A. Allakov

Termez State University
Full-text PDF (300 kB) Citations (1)
References:
Abstract: In this paper proved asymptotic formula
$$ R(n)=\sum\limits_{n=p_1+p_2}\ln p_1\ln p_2=2n\prod\limits_{p>2}\frac{p(p-2)}{(p-1)^2}\prod\limits_{\genfrac{}{}{0pt}{}{p\setminus n}{ p>2}}\frac{p-1}{p-2}+O(n^{1-2\delta}) $$
for all even $n\leq N,$ with the exception can of at most $E(N)<N^{1-\delta}$ values of $n$. Here $N$ is sufficiently large natural number, $p_1$, $p_2$, $p_3$ — are prime numbers, $\delta$ ($0<\delta<1$) is small positive constant. In prove used of Generalized Rieman Hypothesis.
Received: 15.09.2008
Bibliographic databases:
Document Type: Article
UDC: 511.3
MSC: 11P32
Language: Russian
Citation: I. A. Allakov, “On the Goldbañh-numbers”, Chebyshevskii Sb., 9:1 (2008), 4–8
Citation in format AMSBIB
\Bibitem{All08}
\by I.~A.~Allakov
\paper On the Goldbañh-numbers
\jour Chebyshevskii Sb.
\yr 2008
\vol 9
\issue 1
\pages 4--8
\mathnet{http://mi.mathnet.ru/cheb123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2894375}
Linking options:
  • https://www.mathnet.ru/eng/cheb123
  • https://www.mathnet.ru/eng/cheb/v9/i1/p4
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :95
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024