|
This article is cited in 1 scientific paper (total in 1 paper)
On the Goldbañh-numbers
I. A. Allakov Termez State University
Abstract:
In this paper proved asymptotic formula $$ R(n)=\sum\limits_{n=p_1+p_2}\ln p_1\ln p_2=2n\prod\limits_{p>2}\frac{p(p-2)}{(p-1)^2}\prod\limits_{\genfrac{}{}{0pt}{}{p\setminus n}{ p>2}}\frac{p-1}{p-2}+O(n^{1-2\delta}) $$ for all even $n\leq N,$ with the exception can of at most $E(N)<N^{1-\delta}$ values of $n$. Here $N$ is sufficiently large natural number, $p_1$, $p_2$, $p_3$ — are prime numbers, $\delta$ ($0<\delta<1$) is small positive constant. In prove used of Generalized Rieman Hypothesis.
Received: 15.09.2008
Citation:
I. A. Allakov, “On the Goldbañh-numbers”, Chebyshevskii Sb., 9:1 (2008), 4–8
Linking options:
https://www.mathnet.ru/eng/cheb123 https://www.mathnet.ru/eng/cheb/v9/i1/p4
|
Statistics & downloads: |
Abstract page: | 230 | Full-text PDF : | 95 | References: | 46 | First page: | 1 |
|