|
BRIEF MESSAGE
Refinement of the mean angle estimation in the Feyesh Toth problem
D. V. Gorbachev, D. R. Lepetkov Tula State University (Tula)
Abstract:
The Fejes Tóth problem about the maximum $E_{*}$ of the mean value of the sum of angles between lines in $\mathbb{R}^{3}$ with a common center is considered. L. Fejes Tóth suggested that $E_{*}=\frac{\pi}{3}=1.047\ldots$. This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that $E_{*}\le 1.110\ldots$. We refine this estimate using an extremal problem of the Delsarte type: $E_{*}\le A_{*}<1.08326$. Using the dual problem $B_{*}$ we show that the solution of the $A_{*}$ problem does not allow us to prove the Fejes Tóth conjecture, since $1.05210<A_{*}$.
Keywords:
Fejes Tóth conjecture, unit sphere, Legendre polynomial, linear programming bound, Delsarte problem.
Received: 23.08.2022 Accepted: 14.09.2022
Citation:
D. V. Gorbachev, D. R. Lepetkov, “Refinement of the mean angle estimation in the Feyesh Toth problem”, Chebyshevskii Sb., 23:3 (2022), 245–248
Linking options:
https://www.mathnet.ru/eng/cheb1210 https://www.mathnet.ru/eng/cheb/v23/i3/p245
|
Statistics & downloads: |
Abstract page: | 64 | Full-text PDF : | 22 | References: | 12 |
|