Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 3, Pages 245–248
DOI: https://doi.org/10.22405/2226-8383-2022-23-3-245-248
(Mi cheb1210)
 

BRIEF MESSAGE

Refinement of the mean angle estimation in the Feyesh Toth problem

D. V. Gorbachev, D. R. Lepetkov

Tula State University (Tula)
References:
Abstract: The Fejes Tóth problem about the maximum $E_{*}$ of the mean value of the sum of angles between lines in $\mathbb{R}^{3}$ with a common center is considered. L. Fejes Tóth suggested that $E_{*}=\frac{\pi}{3}=1.047\ldots$. This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that $E_{*}\le 1.110\ldots$. We refine this estimate using an extremal problem of the Delsarte type: $E_{*}\le A_{*}<1.08326$. Using the dual problem $B_{*}$ we show that the solution of the $A_{*}$ problem does not allow us to prove the Fejes Tóth conjecture, since $1.05210<A_{*}$.
Keywords: Fejes Tóth conjecture, unit sphere, Legendre polynomial, linear programming bound, Delsarte problem.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This Research was performed by a grant of Russian Science Foundation (project 18-11-00199), \https://rscf.ru/project/18-11-00199/.
Received: 23.08.2022
Accepted: 14.09.2022
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, D. R. Lepetkov, “Refinement of the mean angle estimation in the Feyesh Toth problem”, Chebyshevskii Sb., 23:3 (2022), 245–248
Citation in format AMSBIB
\Bibitem{GorLep22}
\by D.~V.~Gorbachev, D.~R.~Lepetkov
\paper Refinement of the mean angle estimation in the Feyesh Toth problem
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 3
\pages 245--248
\mathnet{http://mi.mathnet.ru/cheb1210}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-3-245-248}
Linking options:
  • https://www.mathnet.ru/eng/cheb1210
  • https://www.mathnet.ru/eng/cheb/v23/i3/p245
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :22
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024