Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 1, Pages 142–152
DOI: https://doi.org/10.22405/2226-8383-2022-23-1-142-152
(Mi cheb1160)
 

Integral manifolds of the first fundamental distribution $lcAC_S$-structure

A. R. Rustanova, E. A. Polkinab, G. V. Teplyakovac

a Institut of Digital Technologics and Modeling in Construction, National Research Moscow State University of Civil Engineering (Moscow)
b Institute of Physics, Technology and Informational Systems, Moscow State Pedagogical University (Moscow)
c Orenburg State University (Orenburg)
References:
Abstract: In paper we consider aspects of the Hermitian geometry of $lcAC_S$structures. The effect of the vanishing of the Neyenhuis tensor and the associated tensors $N^{(1)}$, $N^{(2)}$, $N^{(3)}$, $N^{(4)}$ on the class of almost Hermitian structure induced on the first fundamental distribution of $lcAC_S$structures is investigated. It is proved that the almost Hermitian structure induced on integral manifolds of the first fundamental distribution: $lcAC_S $-manifolds is a structure of the class $W_2\oplus W_4$, and it will be almost Kähler if and only if $grad \ \sigma \subset L(\xi)$; an integrable $lcAC_S $-manifold is a structure of the class $W_4$; a normal $lcAC_S$-manifold is a Kähler structure; a $lcAC_S $-manifold for which $N^{(2)} (X,Y)=0$, or $N^{(3)} (X)=0$, or $N^{(4)} (X)=0$, is an almost Kähler structure in the Gray-Herwell classification of almost Hermitian structures.
Keywords: almost contact structures, almost Hermitian structures, integrability of structures, Neyenhuis tensor, normal structures.
Received: 04.08.2021
Accepted: 27.02.2022
Document Type: Article
UDC: 517
Language: Russian
Citation: A. R. Rustanov, E. A. Polkina, G. V. Teplyakova, “Integral manifolds of the first fundamental distribution $lcAC_S$-structure”, Chebyshevskii Sb., 23:1 (2022), 142–152
Citation in format AMSBIB
\Bibitem{RusPolTep22}
\by A.~R.~Rustanov, E.~A.~Polkina, G.~V.~Teplyakova
\paper Integral manifolds of the first fundamental distribution $lcAC_S$-structure
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 1
\pages 142--152
\mathnet{http://mi.mathnet.ru/cheb1160}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-1-142-152}
Linking options:
  • https://www.mathnet.ru/eng/cheb1160
  • https://www.mathnet.ru/eng/cheb/v23/i1/p142
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:38
    Full-text PDF :9
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024