Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2022, Volume 23, Issue 1, Pages 45–52
DOI: https://doi.org/10.22405/2226-8383-2022-23-1-45-52
(Mi cheb1154)
 

Integer polynomials and Minkowski's theorem on linear forms

V. I. Bernika, I. A. Korlyukovab, A. S. Kudina, A. V. Titovaa

a Institute of Mathematics NAS Belarus (Minsk)
b Grodno State University (Grodno)
Full-text PDF (566 kB) (1)
References:
Abstract: In paper Minkowski's theorem on linear forms [1] is applied to polynomials with integer coefficients
\begin{align} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \end{align}
with degree $degP = n$ and height $H(P)=\max_{0 \le i \le n} |a_i|$. Then, for any $x \in [0,1)$ and a natural number $Q > 1$, we obtain the inequality
\begin{align} |P(x)| < c_1(n) Q ^{-n} \end{align}
for some $P(x), H(P) \leq Q$. Inequality (4) means that the entire interval $[0,1)$ can be covered by intervals $I_i, i = 1, 2, \ldots$ at all points of which inequality (4) is true. An answer is given to the question about the size of the $I_i$ intervals. The main result of this paper is proof of the following statement.
For any $v$, $0 \leq v < \frac{n+1}{3}$, there is an interval $J_k$, $k = 1, \ldots, K$, such that for all $x \in J_k$, the inequality (4) holds and, moreover,
\begin{align*} c_2 Q^{-n-1+v} < \mu J_k < c_3 Q^{-n-1+v}. \end{align*}
Keywords: diophantine approximation, Lebesgue measure, Minkowski's theorem.
Received: 07.08.2021
Accepted: 27.02.2022
Document Type: Article
UDC: 511.42
Language: Russian
Citation: V. I. Bernik, I. A. Korlyukova, A. S. Kudin, A. V. Titova, “Integer polynomials and Minkowski's theorem on linear forms”, Chebyshevskii Sb., 23:1 (2022), 45–52
Citation in format AMSBIB
\Bibitem{BerKorKud22}
\by V.~I.~Bernik, I.~A.~Korlyukova, A.~S.~Kudin, A.~V.~Titova
\paper Integer polynomials and Minkowski's theorem on linear forms
\jour Chebyshevskii Sb.
\yr 2022
\vol 23
\issue 1
\pages 45--52
\mathnet{http://mi.mathnet.ru/cheb1154}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-1-45-52}
Linking options:
  • https://www.mathnet.ru/eng/cheb1154
  • https://www.mathnet.ru/eng/cheb/v23/i1/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :38
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024