Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 5, Pages 234–240
DOI: https://doi.org/10.22405/2226-8383-2021-22-5-234-242
(Mi cheb1129)
 

On real zeros of the derivative of the Hardy function

Sh. A. Khayrulloev

Tajik National University (Dushanbe)
References:
Abstract: The existence of the zeros of the Riemann zeta-function in the short segments of the critical line (or the real zeros of Hardy's function $Z(t)$, that is the same) is one of the topical problems in the theory of the Riemann zeta-function. The study of the zeros of Hardy function's derivatives $Z^{(j)}(t)$ is the generalization of such problem. Let $T>0$. Let us define the quantity $H_j(T)$, the distance from $T$ to the nearest real zero not less than $T$ of the $j$-th derivative of the Hardy function. In the paper, an upper bound for $H_j(T)$ is proved.
Keywords: Hardy function, Riemann zeta function, exponential pair, trigonometric sum, critical line, odd order zero.
Received: 28.05.2021
Accepted: 21.12.2021
Document Type: Article
UDC: 511.32
Language: Russian
Citation: Sh. A. Khayrulloev, “On real zeros of the derivative of the Hardy function”, Chebyshevskii Sb., 22:5 (2021), 234–240
Citation in format AMSBIB
\Bibitem{Kha21}
\by Sh.~A.~Khayrulloev
\paper On real zeros of the derivative of the Hardy function
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 5
\pages 234--240
\mathnet{http://mi.mathnet.ru/cheb1129}
\crossref{https://doi.org/10.22405/2226-8383-2021-22-5-234-242}
Linking options:
  • https://www.mathnet.ru/eng/cheb1129
  • https://www.mathnet.ru/eng/cheb/v22/i5/p234
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :22
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024