Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 5, Pages 198–222
DOI: https://doi.org/10.22405/2226-8383-2021-22-5-198-222
(Mi cheb1127)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the mean values of the Chebyshev function and their applications

Z. Kh. Rakhmonov, O. O. Nozirov

A. Dzhuraev Institute of Mathematics (Dushanbe)
Full-text PDF (712 kB) Citations (1)
References:
Abstract: Assuming the validity of the extended Riemann hypothesis for the average values of Chebyshev functions over all characters modulo $q$, the following estimate holds
$$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x+x^{1/2}q\mathscr{L}^2,\quad \mathscr{L}=\ln xq. $$
When solving a number of problems in prime number theory, it is sufficient that $t(x;q)$ admits an estimate close to this one. The best known estimates for $t(x;q)$ previously belonged to G. Montgomery, R. Vaughn, and Z. Kh. Rakhmonov. In this paper we obtain a new estimate of the form
$$ t(x;q)=\sum_{\chi\mod q}\max_{y\leq x}|\psi(y,\chi)|\ll x\mathscr{L}^{28}+x^{\frac{4}{5}}q^{\frac12}\mathscr{L}^{31}+x^\frac{1}{2}q\mathscr{L}^{32}, $$
using which for a linear exponential sum with primes we prove a stronger estimate
$$ S(\alpha,x)\ll xq^{-\frac12}\mathscr{L}^{33}+x^{\frac{4}{5}}\mathscr{L}^{32}+x^\frac{1}{2}q^\frac12\mathscr{L}^{33}, $$
when $\left|\alpha-\frac aq\right|<\frac1{q^2}$, $(a,q)=1$. We also study the distribution of Hardy-Littlewood numbers of the form $ p + n ^ 2 $ in short arithmetic progressions in the case when the difference of the progression is a power of the prime number.
Keywords: Dirichlet character, Chebishev function, exponential sums with primes, Hardy-Littlewood numbers.
Received: 06.09.2021
Accepted: 21.12.2021
Document Type: Article
UDC: 511.32
Language: Russian
Citation: Z. Kh. Rakhmonov, O. O. Nozirov, “On the mean values of the Chebyshev function and their applications”, Chebyshevskii Sb., 22:5 (2021), 198–222
Citation in format AMSBIB
\Bibitem{RakNoz21}
\by Z.~Kh.~Rakhmonov, O.~O.~Nozirov
\paper On the mean values of the Chebyshev function and their applications
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 5
\pages 198--222
\mathnet{http://mi.mathnet.ru/cheb1127}
\crossref{https://doi.org/10.22405/2226-8383-2021-22-5-198-222}
Linking options:
  • https://www.mathnet.ru/eng/cheb1127
  • https://www.mathnet.ru/eng/cheb/v22/i5/p198
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :24
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024