Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 4, Pages 241–252
DOI: https://doi.org/10.22405/2226-8383-2021-22-4-241-252
(Mi cheb1103)
 

On a class of factors of the Chebyshev polynomials

S. Y. Soloviev

Lomonosov Moscow State University (Moscow)
References:
Abstract: The article defines a class of $D_n(x)$ polynomials by specially designed nodes. Each of $D_n(x)$ is the factor of the Chebyshev polynomial of the first kind $T_{2n}(x)$. The research task for polynomials $D_n(x)$ on the interval $[0,1]$ is reduced to find values $D_n(x)$. The article contains exact expressions and estimates of values $D_n(x)$ in special nodes.
Keywords: Chebyshev polynomials, Lobachevsky function, estimations.
Received: 03.09.2021
Accepted: 06.12.2021
Document Type: Article
UDC: 512.622
Language: Russian
Citation: S. Y. Soloviev, “On a class of factors of the Chebyshev polynomials”, Chebyshevskii Sb., 22:4 (2021), 241–252
Citation in format AMSBIB
\Bibitem{Sol21}
\by S.~Y.~Soloviev
\paper On a class of factors of the Chebyshev polynomials
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 4
\pages 241--252
\mathnet{http://mi.mathnet.ru/cheb1103}
\crossref{https://doi.org/10.22405/2226-8383-2021-22-4-241-252}
Linking options:
  • https://www.mathnet.ru/eng/cheb1103
  • https://www.mathnet.ru/eng/cheb/v22/i4/p241
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :36
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024