Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 3, Pages 166–178
DOI: https://doi.org/10.22405/2226-8383-2018-22-3-166-178
(Mi cheb1069)
 

Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights

E. M. Rarovaa, N. N. Dobrovol'skiiab, I. Yu. Rebrovaa, N. M. Dobrovol'skiia

a Tula State Lev Tolstoy Pedagogical University (Tula)
b Tula State University (Tula)
References:
Abstract: The paper continues the authors' research on the evaluation of trigonometric sums of an algebraic grid with weights. The case of an arbitrary weight function of infinite order is considered.
For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_\infty} (\vec m)$, three cases are highlighted.
If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then for any natural $r$ the asymptotic formula is valid
$$ S_{M(t),\vec\rho_\infty}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$
If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved
$$ |S_{M(t),\vec\rho_\infty}(\vec{m})|\le B(r,\infty)\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
The work has been prepared by the RFBR grant №19-41-710004_р_а.
Received: 09.05.2021
Accepted: 20.09.2021
Document Type: Article
UDC: 511.3
Language: Russian
Citation: E. M. Rarova, N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights”, Chebyshevskii Sb., 22:3 (2021), 166–178
Citation in format AMSBIB
\Bibitem{RarDobReb21}
\by E.~M.~Rarova, N.~N.~Dobrovol'skii, I.~Yu.~Rebrova, N.~M.~Dobrovol'skii
\paper Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 3
\pages 166--178
\mathnet{http://mi.mathnet.ru/cheb1069}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-3-166-178}
Linking options:
  • https://www.mathnet.ru/eng/cheb1069
  • https://www.mathnet.ru/eng/cheb/v22/i3/p166
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :39
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024