Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 3, Pages 143–153
DOI: https://doi.org/10.22405/2226-8383-2018-22-3-143-153
(Mi cheb1067)
 

Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics

A. V. Lunevicha, N. V. Shamukovab

a Institute of Mathematics of the National Academy of Sciences of Belarus (Minsk)
b University of Civil Protection of the Ministry of Emergency Situations of Belarus (Minsk)
References:
Abstract: For a positive integer $Q>0$, let $I\subset \mathbb{R}$ denote an interval of length $\mu_1 I=Q^{-\gamma_1}$ (where $\mu_1$ is the Lebesgue measure) and $\mu_2 K=Q^{-\gamma_2}, \ \gamma_2>0$ (where $\mu_2$ is the Haar measure of a measurable cylinder $K \subset \mathbb{Q}_p$). Let us denote the set of polynomials of degree $\leq n$ and height $H\left(P\right)\leq Q$ as
$$ \mathcal{P}_n\left(Q\right)=\left\{P\in \mathbb{Z}[x]\ :\ \deg{P}\geq n,\ H\left(P\right)\leq Q\right\}. $$
Let $\mathcal{A}\left(n,Q\right)$ denote the set of real and $p$-adic roots of such polynomials $P\left(x\right)$ lying in the space $V=I\times K$. In this paper it is proved that the following inequality holds for a suitable constant $c_1=c_1\left(n\right)$ and $0\leq v_1, v_2\le \frac{1}{2}$:
$$ \#\mathcal{A}\left(n,Q\right)\ge c_1 Q^{n+1-\gamma_1-\gamma_2}. $$
The proof relies on methods of metric theory of Diophantine approximation developed by V.G. Sprindzuk to prove Mahler's conjecture and by V.I. Bernik to prove A. Baker's conjecture.
Keywords: Lebesgue measure, Haar measure, algebraic numbers, Diophantine approximation, irreducible polynomials.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф19М-088
Received: 20.12.2020
Accepted: 20.09.2021
Document Type: Article
UDC: 511.42
Language: Russian
Citation: A. V. Lunevich, N. V. Shamukova, “Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics”, Chebyshevskii Sb., 22:3 (2021), 143–153
Citation in format AMSBIB
\Bibitem{LunSha21}
\by A.~V.~Lunevich, N.~V.~Shamukova
\paper Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 3
\pages 143--153
\mathnet{http://mi.mathnet.ru/cheb1067}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-3-143-153}
Linking options:
  • https://www.mathnet.ru/eng/cheb1067
  • https://www.mathnet.ru/eng/cheb/v22/i3/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :39
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024