|
This article is cited in 2 scientific papers (total in 2 papers)
Estimates the Bergman kernel for classical domains É. Cartan's
J. Sh. Abdullayev National University of Uzbekistan named after M. Ulugbek (Tashkent, Uzbekistan)
Abstract:
The aim of this work is to find optimal estimates for the Bergman kernels for the classical domains ${{\Re }_{I}}\left( m,k \right),{{\Re }_{II}}\left( m \right),{{\Re }_{III}}\left( m \right)$ and ${{\Re }_{IV}}\left( n \right)$ through the Bergman kernels of balls in the spaces ${{\mathbb{C}}^{mk}},{{\mathbb{C}}^{\frac{m\left( m+1 \right)}{2}}},{{\mathbb{C}}^{\frac{m\left( m-1 \right)}{2}}}$ and ${{\mathbb{C}}^{n}}$, respectively. For this, we use the statements of the Summer-Mehring theorem on the extension of the Bergman kernel and some properties of the Bergman kernel.
Keywords:
classical domains, Bergman's kernel, homogeneous domain, symmetric domain, orthonormal system.
Accepted: 20.09.2021
Citation:
J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Chebyshevskii Sb., 22:3 (2021), 20–31
Linking options:
https://www.mathnet.ru/eng/cheb1060 https://www.mathnet.ru/eng/cheb/v22/i3/p20
|
Statistics & downloads: |
Abstract page: | 396 | Full-text PDF : | 109 | References: | 36 |
|