Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 3, Pages 20–31
DOI: https://doi.org/10.22405/2226-8383-2018-22-3-20-31
(Mi cheb1060)
 

This article is cited in 2 scientific papers (total in 2 papers)

Estimates the Bergman kernel for classical domains É. Cartan's

J. Sh. Abdullayev

National University of Uzbekistan named after M. Ulugbek (Tashkent, Uzbekistan)
Full-text PDF (790 kB) Citations (2)
References:
Abstract: The aim of this work is to find optimal estimates for the Bergman kernels for the classical domains ${{\Re }_{I}}\left( m,k \right),{{\Re }_{II}}\left( m \right),{{\Re }_{III}}\left( m \right)$ and ${{\Re }_{IV}}\left( n \right)$ through the Bergman kernels of balls in the spaces ${{\mathbb{C}}^{mk}},{{\mathbb{C}}^{\frac{m\left( m+1 \right)}{2}}},{{\mathbb{C}}^{\frac{m\left( m-1 \right)}{2}}}$ and ${{\mathbb{C}}^{n}}$, respectively. For this, we use the statements of the Summer-Mehring theorem on the extension of the Bergman kernel and some properties of the Bergman kernel.
Keywords: classical domains, Bergman's kernel, homogeneous domain, symmetric domain, orthonormal system.

Accepted: 20.09.2021
Document Type: Article
UDC: 517.55
Language: English
Citation: J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Chebyshevskii Sb., 22:3 (2021), 20–31
Citation in format AMSBIB
\Bibitem{Abd21}
\by J.~Sh.~Abdullayev
\paper Estimates the Bergman kernel for classical domains \'{E}.~Cartan's
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 3
\pages 20--31
\mathnet{http://mi.mathnet.ru/cheb1060}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-3-20-31}
Linking options:
  • https://www.mathnet.ru/eng/cheb1060
  • https://www.mathnet.ru/eng/cheb/v22/i3/p20
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :109
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024