Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 1, Pages 165–185
DOI: https://doi.org/10.22405/2226-8383-2020-21-1-165-185
(Mi cheb1055)
 

This article is cited in 4 scientific papers (total in 4 papers)

Inverse problem for a monoid with an exponential sequence of primes

N. N. Dobrovol'skiiab, I. Yu. Rebrovab, N. M. Dobrovol'skiib

a Tula State University (Tula)
b Tula State L. N. Tolstoy Pedagogical University (Tula)
Full-text PDF (779 kB) Citations (4)
References:
Abstract: In this paper, for an arbitrary monoid ${M(PE)}$ with an exponential sequence of primes $PE$ of type $q$, the inverse problem is solved, that is, finding the asymptotic for the distribution function of elements of the monoid ${M(PE)}$, based on the asymptotic distribution of primes of the sequence of primes $PE$ of type $q$.
To solve this problem, we introduce the concept of an arbitrary exponential sequence of natural numbers of the type $q$ and consider the monoid generated by this sequence. Using two homomorphisms of such monoids, the density distribution problem is reduced to the additive Ingham problem.
It is shown that the concept of power density does not work for this class of monoids. A new concept of $C$ logarithmic $\theta$-power density is introduced.
It is shown that any monoid ${M(PE)}$ for an arbitrary exponential sequence of primes $PE$ of type $q$ has $C$ logarithmic $\theta$-power density with $C=\pi\sqrt{\frac{2}{3\ln q}}$ and $\theta=\frac{1}{2}$.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, exponential sequence of primes, $C$ logarithmic $\theta$-power density.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
The reported study was funded by RFBR, project number 19-41-710004_r_a.
Received: 18.01.2020
Accepted: 20.03.2020
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 181–191
DOI: https://doi.org/10.1134/S1064562422700211
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “Inverse problem for a monoid with an exponential sequence of primes”, Chebyshevskii Sb., 21:1 (2020), 165–185; Doklady Mathematics (Supplementary issues), 106:2 (2022), 181–191
Citation in format AMSBIB
\Bibitem{DobRebDob20}
\by N.~N.~Dobrovol'skii, I.~Yu.~Rebrova, N.~M.~Dobrovol'skii
\paper Inverse problem for a monoid with an exponential sequence of
primes
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 165--185
\mathnet{http://mi.mathnet.ru/cheb1055}
\crossref{https://doi.org/10.22405/2226-8383-2020-21-1-165-185}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 181--191
\crossref{https://doi.org/10.1134/S1064562422700211}
Linking options:
  • https://www.mathnet.ru/eng/cheb1055
  • https://www.mathnet.ru/eng/cheb/v21/i1/p165
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :47
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024