Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 304–312
DOI: https://doi.org/10.22405/2226-8383-2018-22-2-304-312
(Mi cheb1035)
 

This article is cited in 4 scientific papers (total in 4 papers)

Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter

V. G. Chirskiiab

a Lomonosov Moscow State University (Moscow)
b Russian Presidential Academy of National Economy and Public Administration (Moscow)
Full-text PDF (633 kB) Citations (4)
References:
Abstract: We study infinite linear independence of polyadic numbers
$$ f_{0}(\lambda)=\sum_{n=0}^\infty (\lambda)_{n}\lambda^{n}, f_{1}(\lambda)=\sum_{n=0}^\infty (\lambda +1)_{n}\lambda^{n},$$
where $ \lambda $ is a certain polyadic Liouville number. The series considered converge in any field $ \mathbb{\mathrm{Q}}_p $. Here $(\gamma)_{n}$ denotes Pochhammer symbol, i.e. $(\gamma)_{0}=1$ , and for $n\geq 1$ we have$ (\gamma)_{n}=\gamma(\gamma+1)\dots(\gamma+n-1)$. The result extends the previous author's result on the polyadic numbers
$$ f_{0}(1)=\sum_{n=0}^\infty (\lambda)_{n}, f_{1}(1)=\sum_{n=0}^\infty (\lambda +1)_{n}.$$

The values of generalized hypergeometric series are the subject of numerous studies. If the parameters of the series are rational numbers, then they come either in the class of $E$ (if these series are entire functions) or the class of $G$ functions (if they have a finite non-zero radius of convergence) or to the class of $F-$ series ( in the case of zero radius of convergence in the field of complex numbers, however, they converge in the fields of $p-$ adic numbers). In all these cases, the Siegel-Shidlovsky method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on the Hermite-Pade approximations. In this case, the parameter is a transcendental number. It should be noted that earlier A. I. Galochkin proved the algebraic independence of the values of $E - $functions at a point that is a real Liouville number. We also mention the published works of E. Yu. Yudenkova on the values of $F - $ series in polyadic Liouville points. We especially note that in this paper we consider the values in the polyadic transcendental point of hypergeometric series, the parameter of which is the polyadic transcendental (Liouville) number.
Note that earlier A.I. Galochkin proved the algebraic independence of values of $E-$functions at points which are real Liouville numbers. We also mention submitted papers (E.Yu.Yudenkova) about the arithmetic properties of values of $F-$series at polyadic Liouville numbers. It should be specially mentioned that here we study the values of hypergeometric series with a parameter which is a polyadic Liouville number.
Keywords: polyadic Liouville number, infinite linear independence.
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 150–153
DOI: https://doi.org/10.1134/S1064562422700284
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. G. Chirskii, “Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter”, Chebyshevskii Sb., 22:2 (2021), 304–312; Doklady Mathematics (Supplementary issues), 106:2 (2022), 150–153
Citation in format AMSBIB
\Bibitem{Chi21}
\by V.~G.~Chirskii
\paper Arithmetic properties of values at polyadic Liouville points of Euler-type series with polyadic Liouville parameter
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 2
\pages 304--312
\mathnet{http://mi.mathnet.ru/cheb1035}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-2-304-312}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 150--153
\crossref{https://doi.org/10.1134/S1064562422700284}
Linking options:
  • https://www.mathnet.ru/eng/cheb1035
  • https://www.mathnet.ru/eng/cheb/v22/i2/p304
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :54
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024