|
BRIEF MESSAGE
On the sequence of the first binary digits of the fractional parts of the values of a polynomial
A. Ya. Belovab, G. V. Kondakovc, I. V. Mitrofanovd, M. M. Golafshanc a M. V. Lomonosov Moscow State University (Moscow)
b Bar-Ilan University (Israel)
c Moscow Institute of Physics and Technology (Moscow)
d Ecole Normale Superieur, PSL Research University (France)
Abstract:
Let $P(n)$ be a polynomial, having an irrational coefficient of the highest degree. A word $w$ $(w=(w_n), n\in \mathbb{N})$ consists of a sequence of first binary numbers of $\{P(n)\}$ i.e. $w_n=[2\{P(n)\}]$. Denote by $T(k)$ the number of different subwords of $w$ of length $k$ . We'll formulate the main result of this paper.
Theorem. There exists a polynomial $Q(k)$, depending only on the power of the polynomial $P$, such that $T(k)=Q(k)$ for sufficiently great $k$.
Keywords:
Combinatorics on words, symbolical dynamics, unipotent torus transformation, Weiyl lemma.
Received: 21.11.2020 Accepted: 21.02.2021
Citation:
A. Ya. Belov, G. V. Kondakov, I. V. Mitrofanov, M. M. Golafshan, “On the sequence of the first binary digits of the fractional parts of the values of a polynomial”, Chebyshevskii Sb., 22:1 (2021), 482–487
Linking options:
https://www.mathnet.ru/eng/cheb1015 https://www.mathnet.ru/eng/cheb/v22/i1/p482
|
|