Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 1, Pages 482–487
DOI: https://doi.org/10.22405/2226-8383-2018-22-1-482-487
(Mi cheb1015)
 

BRIEF MESSAGE

On the sequence of the first binary digits of the fractional parts of the values of a polynomial

A. Ya. Belovab, G. V. Kondakovc, I. V. Mitrofanovd, M. M. Golafshanc

a M. V. Lomonosov Moscow State University (Moscow)
b Bar-Ilan University (Israel)
c Moscow Institute of Physics and Technology (Moscow)
d Ecole Normale Superieur, PSL Research University (France)
References:
Abstract: Let $P(n)$ be a polynomial, having an irrational coefficient of the highest degree. A word $w$ $(w=(w_n), n\in \mathbb{N})$ consists of a sequence of first binary numbers of $\{P(n)\}$ i.e. $w_n=[2\{P(n)\}]$. Denote by $T(k)$ the number of different subwords of $w$ of length $k$ . We'll formulate the main result of this paper.
Theorem. There exists a polynomial $Q(k)$, depending only on the power of the polynomial $P$, such that $T(k)=Q(k)$ for sufficiently great $k$.
Keywords: Combinatorics on words, symbolical dynamics, unipotent torus transformation, Weiyl lemma.
Funding agency Grant number
Russian Science Foundation 17-11-01377
Received: 21.11.2020
Accepted: 21.02.2021
Document Type: Article
UDC: 517
Language: Russian
Citation: A. Ya. Belov, G. V. Kondakov, I. V. Mitrofanov, M. M. Golafshan, “On the sequence of the first binary digits of the fractional parts of the values of a polynomial”, Chebyshevskii Sb., 22:1 (2021), 482–487
Citation in format AMSBIB
\Bibitem{KanKonMit21}
\by A.~Ya.~Belov, G.~V.~Kondakov, I.~V.~Mitrofanov, M.~M.~Golafshan
\paper On the sequence of the first binary digits of the fractional parts of the values of a polynomial
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 1
\pages 482--487
\mathnet{http://mi.mathnet.ru/cheb1015}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-1-482-487}
Linking options:
  • https://www.mathnet.ru/eng/cheb1015
  • https://www.mathnet.ru/eng/cheb/v22/i1/p482
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :35
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024