|
This article is cited in 3 scientific papers (total in 3 papers)
On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
Yu. N. Baulina Moscow State Pedagogical University
Received: 21.10.2001
Citation:
Yu. N. Baulina, “On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$”, Chebyshevskii Sb., 1:1 (2001), 5–14
Linking options:
https://www.mathnet.ru/eng/cheb1 https://www.mathnet.ru/eng/cheb/v1/i1/p5
|
|