Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


2025, Volume 328 (in preparation)  

| General information | Contents |


Geometry of Landau–Ginzburg Models of Fano Threefolds


Managing editor: V. V. Przyjalkowski


Abstract: The volume is devoted to cohomological aspects of Mirror Symmetry for smooth Fano threefolds and consists of two fundamental papers. The first of them contains a proof of the Katzarkov–Kontsevich–Pantev conjecture on the relation between the Hodge numbers of smooth Fano threefolds and Hodge type numbers of their standard Landau–Ginzburg models. The second paper contains a proof of the Dolgachev–Nikulin duality between smooth Fano threefolds and their standard Landau–Ginzburg models; it also establishes unobstructedness of deformations of Landau–Ginzburg models.


Full text: Contents

Citation: Geometry of Landau–Ginzburg Models of Fano Threefolds, Trudy Mat. Inst. Steklova, 328, ed. V. V. Przyjalkowski, Steklov Mathematical Institute of RAS, Moscow, 2025
Citation in format AMSBIB:
\Bibitem{1}
\book Geometry of Landau--Ginzburg Models of Fano Threefolds
\serial Trudy Mat. Inst. Steklova
\yr 2025
\vol 328
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\ed V.~V.~Przyjalkowski
\mathnet{http://mi.mathnet.ru/book2063}

Linking options:
  • http://mi.mathnet.ru/eng/book2063
  • Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025