Journal of the Belarusian State University. Mathematics and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Journal of the Belarusian State University. Mathematics and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of the Belarusian State University. Mathematics and Informatics, 2018, Volume 2, Pages 17–24 (Mi bgumi3)  

Differential equations and Optimal control

On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions

A. Gladkova, A. I. Nikitinb

a Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
b Vitebsk State University named after P. M. Masherov, 33 Maskouski Avenue, Vitebsk 210038, Belarus
References:
Abstract: We consider a system of semilinear parabolic equations $u_{t}=\Delta u + c_{1}(x,t)\nu^{p}, \nu_{t}=\Delta\nu+c_{2}(x,t)u^{q}, (x,t)\in \Omega\times (0,+\infty)$ with nonlinear nonlocal boundary conditions $\dfrac{\partial u}{\partial\eta}= \int\limits_\Omega k_{1}(x,y,t)u^{m}(y,t)dy, \dfrac{\partial\nu}{\partial\eta}= \int\limits_\Omega k_{2}(x,y,t)\nu^{n}(y,t)dy, (x,t)\in \partial\Omega\times (0,+\infty)$ and initial data $u(x,0)=u_{0}(x), \nu(x,0)=\nu_{0}(x), x\in \Omega$, where $p,q,m,n$ are positive constants, $\Omega$ is bounded domain in $\mathbb{R}^{N}(N\geq 1)$ with a smooth boundary $\partial\Omega, \eta$ is unit outward normal on $\partial\Omega$. Nonnegative locally Holder continuous functions $c_{i}(x,t), i=1,2$, are defined for $x\in \overline{\Omega}, t\geq 0$; nonnegative continuous functions $k_{i}(x,y,t), i=1,2$ are defined for $x\in \partial\Omega, y\in \overline{\Omega}, t\geq 0$; nonnegative continuous functions $u_{0}(x), \nu_{0}(x)$ are defined for $x\in \overline{\Omega}$ and satisfy the conditions $\dfrac{\partial u_{0}(x)}{\partial\eta}= \int\limits_\Omega k_{1}(x,y,0)u_{0}^{m}(y)dy, \dfrac{\partial \nu_{0}(x)}{\partial\eta}= \int\limits_\Omega k_{2}(x,y,0)\nu_{0}^{n}(y)dy$ for $x\in \partial\Omega$. In the paper blow-up set of classical solutions is investigated. It is established that blow-up of the solutions can occur only on the boundary $\partial\Omega$ if $max(p,q)\leq 1, max(m,n)>1$ and under certain conditions for the coefficients $k_{i}(x,y,t), i=1,2$.
Keywords: system of semilinear parabolic equations, nonlocal boundary conditions, blow-up set.
Received: 20.03.2018
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. Gladkov, A. I. Nikitin, “On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2018), 17–24
Citation in format AMSBIB
\Bibitem{GlaNik18}
\by A.~Gladkov, A.~I.~Nikitin
\paper On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions
\jour Journal of the Belarusian State University. Mathematics and Informatics
\yr 2018
\vol 2
\pages 17--24
\mathnet{http://mi.mathnet.ru/bgumi3}
Linking options:
  • https://www.mathnet.ru/eng/bgumi3
  • https://www.mathnet.ru/eng/bgumi/v2/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of the Belarusian State University. Mathematics and Informatics
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :18
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024